• Title/Summary/Keyword: Electrochemical performances

Search Result 284, Processing Time 0.024 seconds

Cathode Characteristics of Co3(PO4)2-Coated [Co0.1Ni0.15Li0.2Mn0.55]O2 for Lithium Rechargeable Batteries (Co3(PO4)2로 표면코팅한 Li[Co0.1Ni0.15Li0.2Mn0.55]O2의 리튬 2차전지용 양극재 특성 )

  • Lee, Sang-Hyo;Kim, Kwang-Man;Koo, Bon-Keup
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.2
    • /
    • pp.112-118
    • /
    • 2008
  • To prepare the high-capacity cathode material with improved electrochemical performances, nanoparticles of $C0_3(PO_4)_2$ were coated on the powder surface of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$, which was already synthesized by simple combustion method. The coated powders after the heat treatment at >$700^{\circ}C$ surely showed well-structured crystalline property with nanoscale surface coating layer, which was consisted of $LiCOPO_4$ phase formed from the reaction bwtween $CO_3(PO_4)_2$ and lithium impurities. In addition, cycle performance was particularly improved by the $CO_3(PO_4)_2$-coating for the cathode material for lithium rechargeable batteries.

Optimum Condition of Conducting Materials on Carbon-PTFE Electrode for Electric Double Layer Capacitor (EDLC용 Carbon-PTFE 전극에서의 도전재 조성 최적화)

  • 이선영;김익준;문성인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.973-978
    • /
    • 2004
  • This work describes the effect of conducting materials on the electrochemical performances of electric double layer capacitor. Three kinds of Carbon black, such as Acethylene Black, Super P Black, Ketjen black supplied by Denki Kagaku Kogyo, MMM Carbon, Ketjen Black International Co. respectively, was added in carbon-Polytetrafluoroethylene (PTFE) electrode, which composition is activated carbon : carbon black : PTFE = 80 : 15 : 5 wt.%, and were compared with their electrochemical properties. The electrode with Ketjen Black has showed the lowest resistance than other carbon black, and also exhibited the better rate capability between 0.5 mA/cm$^2$ ∼ 100 mA/cm$^2$ current density in unit cell capacitor. On the other hand, as increasing the composition of Ketjen Black, the specific resistances of electrodes were decreased and Ketjen Black content higher than 15 wt% increased. The best rate capability was obtained at the electrode with 15 wt.% of Ketjen Black in unit cell capacitor. This behaviors would be correlated with the dense structure of electrode.

Operating Conditions of Proton Exchange Membrane Fuel Cell Using Grafoil$^{TM}$ as Bipolar Plates (그라포일 분리판을 이용한 고분자 전해질 연료전지의 운전 조건에 관한 연구)

  • Park, Taehyun;Chang, Ikwhang;Lee, Yoon Ho;Lee, Juhyung;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.85.1-85.1
    • /
    • 2011
  • In this study, Grafoil$^{TM}$ which has comparable electric resistance and chemical stability but is flexible, fragile, and cheap material was adopted as bipolar plates for proton exchange membrane fuel cell(PEMFC) having only one straight line flow channel. Because of its flexibility, pressurizations of cell with various pressures showed different operating characteristics compared to ordinary graphite-used PEMFC. While performances of both cells decreased as these were pressurized, investigation of ohmic and faradaic resistance by electrochemical impedance measurement indicated different tendency of change. Ohmic resistance of graphite-used cell increased with increasing pressure, which is reversed in Grafoil$^{TM}$-used cell. It is speculated that effective chemical reaction area is decreased with increasing pressure in case of graphite-used one, but because of flexible property of Grafoil$^{TM}$, gas diffusion layer in Grafoil$^{TM}$-used cell was well-activated. Different rate of change of faradaic resistances in both cells support this supposition. However, although optimum point of pressurization is found, it is required to investigate other operating conditions because of low performance compared to graphite-used cell.

  • PDF

Electrochemical Properties of Binary Electrolytes for Lithium-sulfur Batteries

  • Kim, Hyung-Sun;Jeong, Chang-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3682-3686
    • /
    • 2011
  • The electrochemical properties of lithium-sulfur batteries with binary electrolytes based on DME and DOL, TEGDME and DOL mixed solvent containing $LiClO_4$, LiTFSI, and LiTF salts were investigated. The ionic conductivity of 1M LiTFSI and $LiClO_4$ electrolytes based on TEGDME and DOL increased as the volume ratio of DOL solvent increased, because DOL effectively reduces the viscosity of the above electrolytes medium under the same salts concentration. The first discharge capacity of lithium-sulfur batteries in the DME and DOL-based electrolyte followed this order: LiTFSI (1,000 mAh/g) > LiTF (850 mAh/g) > $LiClO_4$ (750 mAh/g). In case of the electrolyte based on TEGDME and DOL, the first discharge capacity of batteries followed this order: $LiClO_4$ (1,030 mAh/g) > LiTF (770 mAh/g) > LiTFSI (750 mAh/g). The cyclic efficiency of lithium-sulfur batteries at 1M $LiClO_4$ electrolytes is higher than that of batteries at other lithium salts-based electrolytes. Lithium-sulfur battery showed discharge capacity of 550 mAh/g until 20 cycles at all electrolytes based on DME and DOL solvent. By contrast, the discharge capacity of batteries was about 450 mAh/g at 1M LiTFSI and LiTF electrolytes based on TEGDME and DOL solvent after 20 cycles.

The Potentiometric Performances of Membrane Electrodes Based on Tetracycline Antibiotics (테트라싸이크린 항생제를 담체로 이용한 막전극의 전위차 특성)

  • Baek, Jong-Gyu;Rhee, In-Sook;Paeng, Ki-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.132-134
    • /
    • 2006
  • The main component governing selectivity in ion-selective electrodes and optodes is the ionophore. For this reason, a member of natural products that possess selective ion-binding properties have long been sought after. By applying this principle, the performance of tetracycline used as neutral carriers for cation selective polymeric membrane electrode was investigated. The cation ion-selective electrode based on tetracycline gave a good Nernstian response of 26.6 mV per decade for calcium ion in the activity range $1x10^{-6}M$ to $1x10^{-2}M$ with and without lipophilic additives. The optimized cation ion-selective membrane electrodes displayed very comparable potentiometric responses to various mono and di-valent cations of alkali and alkaline earth metal ions except $Mg^{2+}$.

Effect of Nafion Membrane Etching for Proton Exchange Membrane Fuel Cell (고분자전해질형 연료전지에서 Nafion막 에칭의 영향)

  • Park Kwon Pil;Cho Gyou Jin;Lee Gun Jik;Chun Hai Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.190-194
    • /
    • 1999
  • Etched Nafion membrane and electrode assemblies were fabricated and those performances were observed in PEMFC. Adhesion of membrane to electrode increased with abrasion of membrane surface. Membrane surface ething results in reduction of hot pressing temperature, as a consequence, in improving of cell performance. It was found that Nafion etching was effective in painting method. The optimum content of electrode catalyst should be selected according to etching intensity.

Battery Performances of with Surface Treatment of Layered $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ Materials in Lithium Secondary Batteries (리튬2차전지용 층상계 $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$의 표면개질에 따른 전지특성 변화)

  • Kim, Hyun-Soo;Kong, Mingzhe;Kim, Ke-Tack;Moon, Seong-In;Yun, Mun-Soo;Kim, Woo-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.348-349
    • /
    • 2006
  • $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ cathode material was synthesized by a mixed hydroxide methode. The surface of the $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ was coated with a carbon by using a sol-gel method to improve further its electrochemical properties. Electrochemical studies were performed by assembling 2032 coin cells with lithium metal as an anode. OSC (differential scanning calorimetry) data showed that exothermic reactions of charged to 4.3V vs. Li was suppressed in the carbon-coated materials. The carbon-coated $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ showed the improved rate capability and thermal stability.

  • PDF

Recent advances in 2-D nanostructured metal nitrides, carbides, and phosphides electrodes for electrochemical supercapacitors - A brief review

  • Theerthagiri, Jayaraman;Durai, Govindarajan;Karuppasamy, K.;Arunachalam, Prabhakarn;Elakkiya, Venugopal;Kuppusami, Parasuraman;Maiyalagan, Thandavarayan;Kim, Hyun-Seok
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.12-27
    • /
    • 2018
  • Supercapacitors (SCs) has gained an impressive concentration by the researchers due to its advantages such as high energy and power densities, long cyclic life, rapid charge-discharge rates, low maintenance and desirable safety. Hence it has been widely utilized in energy storage and conversion devices. Among the different components of SC, electrodes play a vital role in the performances of SCs. In this review, we present the recent advances in 2-D nanostructured metal nitrides, carbides, and phosphides based materials for SC electrodes. Finally, the electrochemical stability and designing approach for the future advancement of the electrode materials are also highlighted.

Interfacial Degradation Reaction between Cathode and Solid Electrolyte in All-Solid-State Batteries (고체전해질과 양극의 계면 열화 반응)

  • Jae-Hun Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.334-342
    • /
    • 2024
  • The need for efficient and sustainable energy storage solutions has emerged due to a rapidly increasing energy demand and growing concerns about environmental issues. Among various energy storage methods, lithium secondary batteries are widely used in a variety of electronic devices such as smartphones, laptops, electric vehicles, and large-scale power storage systems due to their high energy density, long lifespan, and cost competitiveness. Recently, all-solid-state batteries (ASSBs) have attracted great attention because they can reduce the risk of fire associated with liquid electrolytes. Additionally, using high-capacity alternative anodes and cathodes in ASSBs can enhance energy density. However, ASSBs that use solid electrolytes experience a degradation in their electrochemical performances due to resistance at solid-solid interfaces. These interfaces can also result in poor physical contact and the presence of products formed from chemical and electrochemical reactions. Solving this interface problem is a critical issue for the commercialization of ASSBs. This review summarizes interfacial reactions between the cathode and solid electrolyte, along with research aimed at improving these interactions. Future development directions in this field are also discussed.

Electrochemical Characteristics of High Capacity Anode Composites Using Silicon and CNT for Lithium Ion Batteries (실리콘과 CNT를 사용한 리튬 이온 전지용 고용량 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.446-451
    • /
    • 2022
  • In this study, to improve capacity and cycle stability, the pitch coated nano silicon sheets/CNT composites were prepared through electrostatic bonding of nano silicon sheets and CNT. Silica sheets were synthesized by hydrolyzing TEOS on the crystal planes of NaCl, and then nano silicon sheets were prepared by using magnesiothermic reduction method. To fabricate the nano silicon sheets/CNT composites, the negatively charged CNT after the acid treatment was used to assemble the positively charged nano silicon sheets modified with APTES. THF as a solvent was used in the coating process of PFO pitch. The physical properties of the prepared anode composites were analysed by FE-SEM, XRD and EDS. The electrochemical performances of the synthesized anode composites were performed by current charge/discharge, rate performances, differential capacity and EIS tests in the electrolyte LiPF6 dissolve solvent (EC:DMC:EMC = 1:1:1 vol%). It was found that the anode material with high capacity and stability could be synthesized when high composition of silicon and conductivity of CNT were used. The pitch coated nano silicon sheets/CNT anode composites showed initial discharge capacity of 2344.9 mAh/g and the capacity retention ratio of 81% after 50 cycles. The electrochemical property of pitch coated anode material was more improved than that of the nano silicon sheets/CNT composites.