• Title/Summary/Keyword: Electrochemical experiment

Search Result 231, Processing Time 0.031 seconds

A study on the Surface Improvement of Fine-Micro Needles Applying Electrochemical Polishing (전해연마를 적용한 미세 마이크로 니들의 표면 향상에 대한 연구)

  • Jung, Sung-Taek;Kim, Hyun-Jeong;Wi, Eun-Chan;Kong, Jung-Shik;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.48-52
    • /
    • 2019
  • As the consumer market in the mold, automation and aerospace industries grows, the demand for chemical machining using on electrochemical polishing increases. To enhance the surface roughness and gloss of the micro-needle, we have studied for an electrochemical polishing. Electrochemical polishing requires the chemical reaction of solution and material according to the electrolyte and electrode. In this study, sulfuric acid(30%), phosphoric acid(50%), and DI-water(20%)were used as the electrolytic solution, and the electrolytic solution temperature used $58^{\circ}C$. Electrochemical polishing was carried out in experimental conditions, and the micro-needle experiment was carried out from the basic experiment to obtain the experimental conditions. Experimental results show that as the voltage and current increase, the surface roughness improved and the gloss is improved. So, the best result for this experiment was obtained in condition 6, which improved micro-needle.

Mechanical and electrochemical characteristics with welding materials in robotic MIG welding of dissimilar Al alloys (이종 알루미늄 합금의 로봇 미그 용접 시 용접재료에 따른 기계적 및 전기화학적 특성 평가)

  • Kim, Seong Jong;Han, Min Su;Woo, Yong Bin
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.245-252
    • /
    • 2013
  • In this study, mechanical and electrochemical characteristics with welding material in MIG welded with ROBOT for dissimilar Al alloys were investigated using various experiment methods. The MIG welding by ROBOT with ER5183 and ER5556 for the 5456-H116 and 6061-T6 Al alloy were carried out. The hardness of welding zone was lower than that of base metal. In electrochemical experiment, ER5183 welding material presented excellent characteristics. The yield strength and maximum tensile strength in welding with welding material of ER5183 presented lower value than those of ER5556. The elongation and time-to-fracture showed the opposite results.

State of Health estimation based on Secondary Li-ion battery Electrochemical Modeling and Electrical experiment (리튬 이차 전지의 전기화학 모델링과 전기적 실험 기반 상태 추정)

  • Kim, Su-An;Park, Seong-Yun;Kim, Jong-hoon
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1098-1103
    • /
    • 2020
  • This paper deals with a method for estimating the battery state-of-health(SOH) through electrical experiments and electrochemical modeling of lithium-ion secondary battery. In order to confirm the actual battery SOH through the battery electrical aging experiment, the current integration method was used. The SOH is estimated using the internal resistance value derived from the electrical experiment. Also, in electrochemical modeling, the SOH is estimated through the change of the SEI layer with the increase of the number of cycles. The new SOH is derived by applying weighting factor to the three methods of estimating SOH, including the actual battery SOH.

The Protection Potential Decision by Electrochemical Experiment of Al-Mg-Si Alloy for Ship in Seawater (해수용액에서 선박용 Al-Mg-Si 합금의 전기화학적 실험에 의한 방식전위 결정)

  • Jeong, S.O.;Park, J.C.;Han, M.S.;Kim, S.J.
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 2010
  • The many vessels are built with FRP(Fiber-Reinforced Plastic) material for small boats and medium vessels. However, FRP is impossible to be used for recyclable material owing to environmental problems and causes large proportion of collision accidents because radar reflection wave is so weak that large vessels could not detect FRP ships during the sailing. Hence, Al alloy comes into the spotlight to solve these kinds of problems as a new-material for next generation instead of FRP. Al alloy ships are getting widely introduced for fish and leisure boats to save fuel consumption due to lightweight. In this study, it was selected 6061-T6 Al alloy which are mainly used for Al-ships and carried out various electrochemical experiment such as potential, anodic/cathodic polarization, Tafel analysis, potentiostatic experiment and surface morphologies observation after potentiostatic experiment for 1200 sec by using the SEM equipment to evaluate optimum corrosion protection potential in sea water. It is concluded that the optimum corrosion protection potential range is -1.4 V ~ -0.7 V(Ag/AgCl) for 6061-T6 Al alloy, in the case of application of ICCP(Impressed current cathodic protection), which was shown the lowest current density at the electrochemical experiment and good specimen surface morphologies after potentiostatic experiment for Al-Mg-Si(6061-T6) Al alloy in seawater environment.

Electrochemical Characteristics under Cavitation-Erosion Environment of STS 304 and Hot-Dip Aluminized STS 304 in Sea Water Solution (천연해수 용액에서 STS 304와 용융 알루미늄 도금된 STS 304의 캐비테이션-침식 환경 하에서의 전기화학적 특성)

  • Chong, Sang-Ok;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.26-31
    • /
    • 2016
  • In this paper, the characteristics of a cavitation-erosion damage behavior on the STS 304 and hot-dip aluminized STS 304 under cavitation environment in sea water solution was investigated. The electrochemical experiments were carried out by potential measurement, anodic/cathodic polarization test, Tafel analysis, and also galvanostatic experiment in current density variables for the samples. The apparatus of cavitation-electrochemical experiment was manufactured in compliance with modified ASTM G-32 standard, with the conditions of sea water temperature of $25^{\circ}C$ and the measurement, amplitude of $30{\mu}m$. The damage behavior was analyzed by an observation of surface mophologies and a measurement of damage depth by a scanning electron microscope(SEM) and a 3D microscope, respectively, after electrochemical test. After polarization experiment under cavitation environment, much higher damage depths for the hot-dip aluminized STS 304 were observed comparing to the untreated STS 304. In addition, higher corrosion current density in hot-dip aluminized STS 304 presented than that of untreated STS 304 as a result of Tafel analysis.

Finite Element Simulation and Experimental Study on the Electrochemical Etching Process for Fabrication of Micro Metal Mold (미세금형 가공을 위한 전기화학식각 공정의 유한요소 해석 및 실험결과 비교)

  • Ryu, Heon-Yul;Im, Hyeon-Seung;Cho, Si-Hyeong;Hwang, Byeong-Jun;Lee, Sung-Ho;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.482-488
    • /
    • 2012
  • To fabricate a precise micro metal mold, the electrochemical etching process has been researched. We investigated the electrochemical etching process numerically and experimentally to determine the etching tendency of the process, focusing on the current density, which is a major parameter of the process. The finite element method, a kind of numerical analysis, was used to determine the current density distribution on the workpiece. Stainless steel(SS304) substrate with various sized square and circular array patterns as an anode and copper(Cu) plate as a cathode were used for the electrochemical experiments. A mixture of $H_2SO_4$, $H_3PO_4$, and DIW was used as an electrolyte. In this paper, comparison of the results from the experiment and the numerical simulation is presented, including the current density distribution and line profile from the simulation, and the etching profile and surface morphology from the experiment. Etching profile and surface morphology were characterized using a 3D-profiler and FE-SEM measurement. From a comparison of the data, it was confirmed that the current density distribution and the line profile of the simulation were similar to the surface morphology and the etching profile of the experiment, respectively. The current density is more concentrated at the vertex of the square pattern and circumference of the circular pattern. And, the depth of the etched area is proportional to the current density.

Macro and Micro-electrochemical Characteristics on Dissimilar Welding Metal of Double Wall Gas Pipe for Duel Fuel Engine (이중 연료 엔진용 이중벽 가스 배관 이종 용접부의 매크로 및 마이크로 전기화학적 특성)

  • Kim, Seong-Jong;Park, Jae-Cheul;Han, Min-Su;Jang, Seok-Ki
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.331-337
    • /
    • 2010
  • This study compared the macro and micro electrochemical characteristics at the local area of welding metal on dissimilar welding parts for type 304 stainless steel (SS) and type 316L SS. The materials are used for double wall gas pipe of duel fuel engine for a ship. The various potentiodynamic experiments were performed several times in 10% ${H_2C_2O_2}{\cdot}{H_2O}$ solution using macro and micro methods, respectively. The micro electrochemical experiments conducted to resolve at local area on cross-section of dissimilar welding materials by micro-droplet cell device. The micro-droplet cell techniques can be used almost electrochemical experiments to resolve corrosion characteristics of the limited electrode area of the metallic surface between wetted spot of working electrode and tip of sharpened capillary tube. The results of macro electrochemical experiments show that resistance of active dissolution reaction at welding zone was high due to low current density by formation of passivation protection film at passive region. According to the micro electrochemical experiment, the corrosion current density of welding zone and bond zone were relatively high.

Electrochemical Behavior of Ce ion and Bi ion in LiCl-KCl Molten Salt

  • Kim, Beom-Kyu;Han, Hwa-Jeong;Park, Ji-Hye;Kim, Won-Ki;Park, Byung Gi
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.05a
    • /
    • pp.227-228
    • /
    • 2017
  • In this paper, electrolytic behavior of Cerium and Ce-Bi ion system was studied. The electrochemical behavior of Ce was studied in $LiCl-KCl-CeCl_3$ molten salts using electrochemical techniques Cyclic Voltammetry on tungsten electrodes at 773K. During the process of CV electrolysis, intermetallic compound were observed of Ce, Cex-Biy. Further study, in order to determine clarity of diffusion coefficient in this experiment, we will compare result of electrochemistry method and we also need to quantitative research.

  • PDF

Evaluation of Electrochemical Corrosion Characteristics for Hot-Dip Aluminized 304 Stainless Steel in Seawater (알루미늄 용융 도금된 304 스테인리스강의 해수 내 전기화학적 부식 특성 평가)

  • Chong, Sang-Ok;Park, Il-Cho;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.354-359
    • /
    • 2015
  • Stainless steel has poor corrosion resistance in marine environment due to the breakdown of a passive film caused by chloride. It suffers electrochemical corrosion like pitting corrosion, crevice corrosion, and stress corrosion crack (SCC) in marine environment. In general, it indicates that the passive film of $Al_2O_3$ has better corrosion resistance than that of $Cr_2O_3$ in seawater. This paper investigated the damage behavior 304 stainless steel and hot-dip aluminized 304 stainless steel in seawater solution. Various electrochemical experiments were carried out including potential measurement, potentiodynaimic experiment, Tafel analysis and galvanostatic experiment. As a result of anodic polarization experiment, higher pitting damage depth was indicated at 304 stainless steel than hot-dip aluminized 304 stainless steel. In addition, relatively higher corrosion current density was shown at hot-dip aluminized stainless steel as a result of Tafel analysis.

Electrochemical Properties of Austenitic Stainless Steel with Initial Delay Time and Surface Roughness in Electropolishing Solution (전해연마 용액에서 안정화 시간과 표면 거칠기에 따른 오스테나이트 스테인리스강의 전기화학적 특성)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.158-169
    • /
    • 2022
  • The objective of this study was to investigate the electrochemical behavior and damage degree of metal surface under different conditions by performing a potentiodynamic polarization experiment using an electropolishing solution for UNS S31603 based on initial delay time and surface roughness (parameters). A second anodic peak occurred at initial delay time of 0s and 100s. However, it was not discovered at 1000s and 3600s. This research referred to an increase in current density due to hydrogen oxidation reaction among various hypotheses for the second anodic peak. After the experiment, both critical current density and corrosion current density decreased when the initial delay time (immersion time) was longer. As a result of surface analysis, characteristics of the potentiodynamic polarization behavior were similar with roughness, although the degree of damage was clearly different. With an increase in surface roughness value, the degree of surface damage was precisely observed. As such, electrochemical properties were different according to the immersion time in the electropolishing solution. To select electropolishing conditions such as applied current density, voltage, and immersion time, 1000s for initial delay time on the potentiodynamic polarization behavior was the most appropriate in this experiment.