• Title/Summary/Keyword: Electrochemical characteristics

Search Result 1,459, Processing Time 0.028 seconds

Evaluation of Electrochemical and Mechanical Characteristics in MIG Welding Parts of Dissimilar Al Alloys for Ship (선박용 이종 알루미늄 합금 미그 용접부의 기계적 및 전기화학적 특성 평가)

  • Woo, Yong-Bin;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • In the study, it was carried out dissimilar metal welding on materials for Al ship. The electrochemical and mechanical characteristics evaluated for specimen welded by ROBOT. The hardness of welding zone is lower than those of heat affected zone and base metal. At the result of tensile test, the specimen welded with ER5183 welding material presented excellent property compared with ER5556. The polarization trend for the base metal and welding metal showed the effects of concentration polarization due to oxygen reduction and activation polarization due to hydrogen generation. At the Tafel experiments result, the corrosion density in welded with ER5183 welding material presented the lowest value.

Synthesis and Electrochemical Performance of Polypyrrole-Coated Iron Oxide/Carbon Nanotube Composites

  • Kim, Dae-Won;Kim, Ki-Seok;Park, Soo-Jin
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.157-160
    • /
    • 2012
  • In this work, iron oxide ($Fe_3O_4$) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by a simple chemical coprecipitation method and $Fe_3O_4$-decorated MWNTs (Fe-MWNTs)/polypyrrole (PPy) nanocomposites (Fe-MWNTs/PPy) were prepared by oxidation polymerization. The effect of the PPy on the electrochemical properties of the Fe-MWNTs was investigated. The structures characteristics and surface properties of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The electrochemical performances of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were determined by cyclic voltammetry and galvanostatic charge/discharge characteristics in a 1.0 M sodium sulfite electrolyte. The results showed that the Fe-MWNTs/PPy electrode had typical pseudo-capacitive behavior and a specific capacitance significantly greater than that of the Fe-MWNT electrode, indicating an enhanced electrochemical performance of the Fe-MWNTs/PPy due to their high electrical properties.

Electrochemical Removal Characteristics of Disinfection By-products by Chlorination in Drinking Water (음용수내 발암물질인 염소 소독부산물의 전기화학적 제거 특성)

  • Kwon, Sun-Woo;Lee, Jong-Dae;Sin, Jang-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.364-369
    • /
    • 2004
  • It has been confirmed that some Trihalomethanes (THMs) suspected as carcinogens, can be formed during chlorination for water supply through the reaction of chlorine and humic substances in water. The electrochemical characteristics on activated carbon fiber filter (ACF) electrode were investigated to remove the THMs in the chlorination process of drinking water. The electrochemical removal efficiency depended on the applied voltage and flow rate. In this study, the best result showed that the removal efficiency of THMs was higher than 99%.

Effect of Alloying Elements on the Electrochemical Characteristics of an Al Alloy Electrode for Al-air Batteries in 4 M NaOH solution

  • Choi, Yun-Il;Kalubarme, R.S.;Jang, Hee-Jin;Park, Chan-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.839-844
    • /
    • 2011
  • We examined the effects of alloying elements such as Fe, Ga, In, Sn, Mg, and Mn on the electrochemical characteristics of Al-based alloys for Al-air batteries by potentiodynamic polarization tests and electrochemical impedance spectroscopy. The corrosion potential of an Al anode was lowered by the addition of Ga and Sn, resulting in an increase in the cell voltage compared with a pure Al electrode. Fe was not beneficial to improve the electrochemical properties of the Al anode in that it caused a decrease in the cell voltage and reduced corrosion rate slightly. In, Mn, Sn, and Mg decreased the corrosion rate of the Al alloys, while Ga enhanced corrosion significantly and accelerated consumption of the anode.