• Title/Summary/Keyword: Electrochemical behavior

Search Result 808, Processing Time 0.03 seconds

A Study on the Electronic Properties and Electrochemical Behavior of Transition Metal(Ⅳ) Complexes (Ⅳ) (전이금속(Ⅳ) 착물들의 전자적 성질과 전기 화학적 거동에 관한 연구(Ⅳ))

  • Choi, Chil Nam;Son, Hyo Youl
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.5
    • /
    • pp.356-363
    • /
    • 1995
  • The chemical behavior of the transition metal (Nb4+ and Mo4+) complexes with organoligand (dichloro-bis(η-cyclopentadienyl) has been investigated by the UV/vis-spectrophotometric, magnetic, and electrochemical method. The two or three energy absorption bands are observed by the spectra of these complexes. The magnitude of crystal field splitting energy, the spin pairing energy and bond strength was obtained from the spectra of the complexes. These are found to be delocalization, low-spin state, and strong bonding strength. The magnetic dipolemoment are found to be paramagnetic and diamagnetic complexes. The redox reaction processes of complexes were investigated by cyclic voltammetry in aprotic media. As a result the redox reaction proceses of Nb-C complex was couple-single reaction with diffusion and reaction current one electron process, and also Mo-C complex was couple-single reaction with reaction current of one electron process.

  • PDF

Electrochemical Behavior of Mg2+ Ions in MgCl2-CaCl2-NaCl Molten Salt (MgCl2-CaCl2-NaCl 혼합용융염에서 Mg2+ 이온의 전기화학적 거동)

  • Ryu, Hyo Yeol;Jeong, Sang Mun;Kim, Jeong-Guk
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.939-944
    • /
    • 2012
  • The electrochemical behavior of magnesium ions was examined by cyclic voltammetry in a molten $MgCl_2-CaCl_2$-NaCl salt. The reduction potential of magnesium ions was measured and those values were estimated with the variation of the concentration of $MgCl_2$ and the temperature of molten salts. The diffusion coefficient of the $Mg^{2+}$ ions has been determined at 660, 680, 700, 720 and $740^{\circ}C$. The values were $8.79{\times}10^{-6}$, $9.56{\times}10^{-6}$, $1.17{\times}10^{-5}$, $1.4{\times}10^{-5}$ and $1.77{\times}10^{-5}\;cm^2\;s^{-1}$. The activation energy for the diffusion processes of $Mg^{2+}$ ions was found to be $70.28\;kJ\;mol^{-1}$ by using the Arrhenius equation.

Electrochemical Behavior of Plasma Electrolytic Oxidized Films Formed in Solution Containing Mn, Mg and Si Ions

  • Lim, Sang-Gyu;Choe, Han Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.80-80
    • /
    • 2017
  • Titanium and its alloys that have a good biocompatibility, corrosion resistance, and mechanical properties such as hardness and wear resistance are widely used in dental and orthopedic implant applications. However, they do not form a chemical bond with bone tissue. Plasma electrolytic oxidation (PEO) that combines the high voltage spark and electro-chemical oxidation is a novel method to form ceramic coatings on light metals such as tita-nium and its alloys. This is an excellent re-producibility and economical, because the size and shape control of the nano-structure is relatively easy. Silicon (Si), manganese (Mn), and magne-sium (Mg) have a useful to bone. Particularly, Si has been found to be essential for normal bone, cartilage growth, and development. Mn influences regulation of bone remodeling be-cause its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. Pre-studies have shown that Mg plays very im-portant roles in essential for normal growth and metabolism of skeletal tissue in verte-brates and can be detected as minor constitu-ents in teeth and bone. In this study, Electrochemical behavior of plasma electrolytic oxidized films formed in solution containing Mn, Mg and Si ions were researched using various experimental in-struments. A series of Si-Mn-Mg coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 5 and 10%. The potentiodynamic polarization and AC impedance tests for corrosion behav-iors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV. Also, AC impedance was performed at frequencies anging from 10MHz to 100kHz for corrosion resistance.

  • PDF

Electrochemical Studies of Light Lantanide Complexes (Part 1) (가벼운 란탄족 원소 착물의 전기화학적 연구 (제 1 보))

  • Kang Sam-Woo;Park Chong-Min;Chang Choo-Hawn;Do Lee-Mi;Suh Moo-Yul
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.83-91
    • /
    • 1993
  • The eletrochemical behavior of light lanthanide complexes has been investigated by several electrochemical techniques in alkaline solutions. The composition of the complexes was determined by spectrophotometric method to be 1 : 1 and reduction mechanism was two steps 1 electron transfer reaction. The half wave potential of first peak depended on pH and cathodic current showed remarkably adsorptive properties. The results of DC and CV investigation demonstrated the quise-reversible nature of the electron transfer. The anion radical formed after first one electron reduction process, dimerizes to form dimer. The apparent irreversible behavior of the second wave is a result of the existence of a fast protonation following the second electron transfer. An exhaustive electrolysis was carried out at controlled potential of -1.80 V, deep blue color of the solution became progressively weaker, and then the solution became colorless solution. The final product of an exhaustive electrolysis is electro-inactive. The appearance of four steps may be explained by the fact the reduction of Ln-OCP elucidated ECEC mechanism.

  • PDF

A Study on the Electrochemical Behavior of Au and Pd in Hydrochloric Acidic Solution (염산 수용액 중에서 Au와 Pd의 전기화학적 거동에 관한 연구)

  • Yu, Yeon-Tae;Kim, Chi-Kwon
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.76-81
    • /
    • 2001
  • In order to recover Au and Pd from the leaching solution of various electronic wastes by electrowinning, the electrochemical behavior of Au and Pd in hydorchloric acidic solution was investigated by means of voltammetry. The reduction potential of Au ion was 800mV and the limiting current appeared at 470mV in electrolytic solution of gold. The reduction potential of Pd ion was 500mv and the limiting current appeared at 150mV in electrolytic solution of Palladium. However, in Au-Pd electrolytic solution, the Potentials for reduction and the limiting current of Au decreased as the content of Pd in electrolyte increased, and the potentials for the limiting current of Au and Pd closed nearest together when percentage of Pd electrolytic solution was 37v71% in Au-Pd electrolyte.

  • PDF

Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic

  • Ye, Chang-Mei;Jiang, Shi-Lin;Liu, Ya-Lan;Xu, Kai;Yang, Shao-Hua;Chang, Ke-Ke;Ren, Hao;Chai, Zhi-Fang;Shi, Wei-Qun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3-GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.

The electrochemical properties of PVD-grown WC-( $Ti_{1-x}$A $I_{x}$)N multiplayer films in a 3.5% NaCl solution

  • Ahn, S.H.;Yoo, J.H.;Kim, J.G.;Lee, H.Y.;Han, J.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2001
  • WC-( $Ti_{1-x}$ A $l_{x}$) N coatings of constant changing Al concentration were deposited on S45C substrates by high-ionization sputtered PVD method. The Al concentration could be controlled by using evaporation source for Al and fixing the evaporation rate of the metals (i.e, WC- $Ti_{0.86}$A $l_{0.14}$N, WC- $Ti_{0.72}$A $l_{0.28}$N, and WC- $Ti_{0.58}$A $l_{0.42}$N). The corrosion behavior of WC-( $Ti_{1-x}$ A $l_{x}$)N coatings in a deaerated 3.5% NaCl solution was investigated by electrochemical corrosion tests and surface analyses. The measured galvanic corrosion currents between coating and substrate indicated that WC- $Ti_{0.72}$A $l_{0.28}$N coating showed the best resistance of the coating tested. The results of potentiodynamic polarization tests showed that the WC- $Ti_{0.72}$A $l_{0.28}$N coating deposited with 32W/c $m^2$ of Al target revealed higher corrosion resistance. This indicated that the WC- $Ti_{0.72}$A $l_{0.28}$N coating is effective in improving corrosion resistance. In EIS, the WC- $Ti_{0.72}$A $l_{0.28}$N coating showed one time constant loop and increased a polarization resistance of coating ( $R_{coat}$) relative to other samples. Compositional variations of WC-( $Ti_{1-x}$ A $l_{x}$)N coatings were analyzed by EDS and XRD analysis was performed to evaluate the crystal structure and compounds formation behavior. Surface morphologies of the films were observed using SEM and AFM. Scratch test was performed to measure film adhesion strength.strength. adhesion strength.strength.

  • PDF

IMPROVEMENT EFFECTS OF ELECTROCHEMICAL STABILITY OF MAGNETIC MATERIALS FOR PROSTHETIC DENTISTRY (치과보철용 자석재료의 전기화학적 안정성 개선효과)

  • Kwack, Jong-Ha;Oh, Sang-Ho;Choe, Han-Cheol;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.628-641
    • /
    • 2006
  • Statement of problem: Dental magnetic materials have been applied to removable prosthetic appliances, maxillofacial prostheses, obturator and dental implant but they still have some problems such as low corrosion resistance in oral environments. Purpose: To increase the corrosion resistance of dental magnetic materials, surfaces of Sm-Co and Nd-Fe-B based magnetic materials were plated with TiN and sealed with stainless steels. Materials and methods : Surfaces of Sm-Co and Nd-Fe-B based magnetic materials were plated with TiN and sealed with stainless steels, and then three kinds of electrochemical corrosion test were performed in 0.9% NaCl solution; potentiodynamic, potentiostatic, and electrochemical impedance test. From this study, corrosion behavior, amount of elements released, mean average surface roughness values, the changing of retention force, and magnetic force values were measured comparing with control group of non-coated magnetic materials. Results: The values of surface roughness of TiN coated Sm-Co and TiN coated Nd-Fe-B based magnetic materials were lower than those of non coated Sm-Co and Nd-Fe-B alloy. From results of potentiodynamic test, the passive current density of TiN coated Sm-Co alloy were smaller than those of TiN coated Nd-Fe-B alloy and non coated alloys in 0.9% NaCl solution. From results of potentiostatic and electrochemical impedance test, the surface stability of the TiN coated Sm-Co alloy was more drastically increased than that of the TiN coated Nd-Fe-B alloy and non-coated alloy. The retention and magnetic force after and before corrosion test did not change in the case of TiN coated magnetic alloy sealed with stainless steel. Conclusion: It is considered that the corrosion problem and improvement for surface stability of dental magnetic materials could be solved by ion plating with TiN on the surface of dental magnetic materials and by sealing with stainless steels.

Electrochemical Behavior of a Nickel Hydroxide Particle for Ni-MH Battery by Microelectrode (마이크로전극에 의한 니켈수소전지용 수산화니켈 입자의 전기화학적 거동)

  • Kim, Ho-Sung;Oh, Ik-Hyun;Lee, Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.145-149
    • /
    • 2007
  • Electrochemical studies were performed for a single particle of nickel hydroxide for the cathode of Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and electrochemical experiments were performed. As a result of cyclic voltammetry, the oxidation/reduction and oxygen evolution reaction (OER) are clearly separated for a single particle. The total cathodic charge (Qred) is practically constant for the scan rate investigated, indicating that the whole particle has reacted. The total anodic charge(Qox) was larger than that of reduction reaction, and the magnitude of oxygen evolution taking place as a side reaction was enhanced at lower scan rates. As a result of galvanostatic charge and discharge measurement, the discharge capacity of single particle was found to be 250 mAh/g, value being very close to the theoretical capacity (289 mAh/g). The apparent proton diffusion coefficient(Dapp) using potential step method inside the nickel hydroxide was found to range within $3{\sim}4{\times}10^{-9}\;cm^2/s$.

High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries (다음세대 리튬이온 배터리용 고에너지 밀도 게르마늄 음극)

  • Ocon, Joey D.;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • Lithium ion batteries (LIBs) are the state-of-the-art technology among electrochemical energy storage and conversion cells, and are still considered the most attractive class of battery in the future due to their high specific energy density, high efficiency, and long cycle life. Rapid development of power-hungry commercial electronics and large-scale energy storage applications (e.g. off-peak electrical energy storage), however, requires novel anode materials that have higher energy densities to replace conventional graphite electrodes. Germanium (Ge) and silicon (Si) are thought to be ideal prospect candidates for next generation LIB anodes due to their extremely high theoretical energy capacities. For instance, Ge offers relatively lower volume change during cycling, better Li insertion/extraction kinetics, and higher electronic conductivity than Si. In this focused review, we briefly describe the basic concepts of LIBs and then look at the characteristics of ideal anode materials that can provide greatly improved electrochemical performance, including high capacity, better cycling behavior, and rate capability. We then discuss how, in the future, Ge anode materials (Ge and Ge oxides, Ge-carbon composites, and other Ge-based composites) could increase the capacity of today's Li batteries. In recent years, considerable efforts have been made to fulfill the requirements of excellent anode materials, especially using these materials at the nanoscale. This article shall serve as a handy reference, as well as starting point, for future research related to high capacity LIB anodes, especially based on semiconductor Ge and Si.