• 제목/요약/키워드: Electrochemical Ammonia Synthesis

검색결과 4건 처리시간 0.018초

Pt/GDC/Pt 셀을 이용한 물과 질소로부터 전기화학적 암모니아 합성 (Electrochemical Synthesis of Ammonia from Water and Nitrogen using a Pt/GDC/Pt Cell)

  • 정하나;김종남;유충열;주종훈;유지행;송기창;;윤형철
    • Korean Chemical Engineering Research
    • /
    • 제52권1호
    • /
    • pp.58-62
    • /
    • 2014
  • 본 연구에서는 Pt/GDC/Pt 셀을 이용하여 상압에서 물과 질소로부터 전기화학적으로 암모니아를 합성하는 연구를 수행하였다. 수분이 포화된 질소분위기에서 작동온도($400{\sim}600^{\circ}C$)와 전압(OCV(Open Circuit Voltage)~1.2 V)에 대한 전기화학적 특성 평가를 수행하였고, 암모니아 합성량을 정량 분석하였다. 정전압 하에서 작동온도의 증가에 따라 인가 전류의 증가로 암모니아 합성량은 증가하였으나, Pt 전극에서 암모니아 합성에 필요한 질소의 화학적 해리 흡착 반응의 한계로 패러데이 효율(faradaic efficiency)은 감소하였다. $600^{\circ}C$에서 최대 암모니아 합성량인 $3.67{\times}10^{-11}mols^{-1}cm^{-2}$(6.7 mA) 얻었고 패러데이 효율은 0.1%이다.

전기화학적 암모니아 합성을 위한 루테늄 촉매 표면에서의 질소 환원반응 메커니즘 해석의 위한 제1원리 모델링 (First-Principles Analysis of Nitrogen Reduction Reactions on Ruthenium Catalyst Surfaces for Electrochemical Ammonia Synthesis)

  • 조미현;이상헌
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.598-603
    • /
    • 2023
  • 촉매를 사용한 전기화학적 암모니아 생산은 주변 온도 및 압력 조건, 환경 친화적인 작동 및 고순도 암모니아 생산을 가능하게 함으로써 전통적인 하버-보쉬 방법을 대체할 대안으로서 가능성이 있다. 본 연구에서는 제1원리 계산을 사용하여 루테늄 촉매의 표면에서 발생하는 질소 환원 반응에 초점을 맞춘다. 루테늄의 (0001) 및 (1000) 표면에서 질소 환원에 대한 반응 경로를 모델링하여 반응 구조를 최적화하고 각 단계에 대한 유리한 경로를 예측했다. 각 표면에서의 N2의 흡착 구성은 후속 반응 활동에 상당한 영향을 미쳤으며, 깁스자유에너지 분석은 가장 유리한 질소 환원 구성을 도출하였다. 루테늄의 (0001) 표면에서는 질소 분자가 표면에 수직으로 흡착하는 end-on 형태가 가장 유리한 N2 흡착에너지가 나타났으며 유사하게, (1000) 표면에서도 end-on 형태가 안정적인 흡착 에너지 값을 보였다. 이어서, distal 및 alternating 구성 모두에서 최적화된 수소 흡착을 통해 NH3의 최종 탈착까지 이론적으로 완전한 반응 경로를 설명했다.

TiCl4를 출발원료로한 구형 Li4Ti5O12 분말합성 및 리튬이차 전지특성 (Electrochemical Properties of Lithium Secondary Battery and the Synthesis of Spherical Li4Ti5O12 Powder by Using TiCl4 As a Starting Material)

  • 최병현;지미정;권용진;김은경;남산
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.669-675
    • /
    • 2010
  • One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are among the most promising candidates in terms of energy and power density. As the starting material, $TiCl_4{\cdot}YCl_3$ solution and dispersing agent (HCP) were mixed and synthesized using ammonia as the precipitation agent, in order to prepare the nano size Y doped spherical $TiO_2$ precursor. Then, the $Li_4Ti_5O_{12}$ was synthesized using solid state reaction method through the stoichiometric mixture of Y doped spherical $TiO_2$ precursor and LiOH. The Ti mole increased the concentration of the spherical particle size due to the addition of HPC with a similar particle size distribution in a well in which $Li_4Ti_5O_{12}$ spherical particles could be obtained. The optimal synthesis conditions and the molar ratio of the Ti 0.05 mol reaction at $50^{\circ}C$ for 30 minutes and at $850^{\circ}C$ for 6 hours heat treatment time were optimized. $Li_4Ti_5O_{12}$ was prepared by the above conditions as a working electrode after generating the Coin cell; then, electrochemical properties were evaluated when the voltage range of 1.5V was flat, the initial capacity was 141 mAh/g, and cycle retention rate was 86%; also, redox reactions between 1.5 and 1.7V, which arose from the insertion and deintercalation of 0.005 mole of Y doping is not a case of doping because the C-rate characteristics were significantly better.

암모니아의 재생 및 농축을 위한 금속 전구체에 따른 금속 첨착 활성탄의 흡착 및 탈착 특성에 관한 연구 (A Study on the Adsorption and Desorption Characteristics of Metal-Impregnated Activated Carbons with Metal Precursors for the Regeneration and Concentration of Ammonia)

  • 조광희;박지혜;;윤형철;이광복
    • 청정기술
    • /
    • 제26권2호
    • /
    • pp.137-144
    • /
    • 2020
  • 저농도 암모니아의 재생 및 농축을 위하여 초음파 함침법으로 금속 첨착 활성탄을 제조하였다. 금속으로는 마그네슘과 구리를 선정하였고, 염화물(Cl-)과 질산염(NO3-) 전구체를 사용하여 활성탄 표면에 첨착하였다. 흡착제의 물리 및 화학적 특성은 TGA, BET 그리고 NH3-TPD를 통해 분석되었다. 암모니아 파과실험은 고정층 반응기를 사용하여 암모니아(1000 mg L-1 NH3, balanced N2)를 100 mL min-1으로 주입하였으며, 온도변동 흡착법(TSA)과 압력변동 흡착법(PSA, 0.3, 0.5, 0.7, 0.9 Mpa)에서 수행하였다. 암모니아의 흡착 및 탈착 성능은 NH3-TPD와 TSA 및 PSA 공정에서 AC-Mg(Cl) > AC-Cu(Cl) > AC-Mg(N) > AC-Cu(N) > AC 순으로 나타났다. 그 중 MgCl2를 사용한 AC-Mg(Cl)은 TSA에서 평균 흡착량 2.138 mmol g-1을 나타내었다. 또한 PSA 0.9 Mpa에서 3.848 mmol g-1로 가장 높은 초기 흡착량을 나타내었다. 활성탄 표면에 금속이 첨착되면 물리흡착뿐만 아니라 화학흡착이 수반되어 흡착 및 탈착 성능이 증가하는 것을 확인하였다. 또한 흡착제는 반복적인 공정에도 안정적인 흡착 및 탈착 성능을 나타내어 TSA와 PSA 공정에서의 적용 가능성을 확인하였다.