• 제목/요약/키워드: Electro-osmotic force

검색결과 4건 처리시간 0.017초

Electro-osmotic pump in osteo-articular tissue engineering: A feasibility study

  • Lemonnier, Sarah;Naili, Salah;Lemaire, Thibault
    • Advances in biomechanics and applications
    • /
    • 제1권4호
    • /
    • pp.227-237
    • /
    • 2014
  • The in vitro construction of osteo-articular large implants combining biomaterials and cells is of great interest since these tissues have limited regeneration capability. But the development of such organoids is particularly challenging, especially in the later time of the culture, when the extracellular matrix has almost filled the initial porous network. The fluid flow needed to efficiently perfuse the sample can then not be achieved using only the hydraulic driving force. In this paper, we investigate the interest of using an electric field to promote mass transport through the scaffold at the late stage of the culture. Based on the resolution of the electrokinetics equations, this study provides an estimation of the necessary electric driving force to reach a sufficient oxygen perfusion through the sample, thus analyzing the feasibility of this concept. The possible consequences of such electric fields on cellular activities are then discussed.

고분자전해질 연료전지에서 고분자막을 통한 물의 이동 (Transport of Water through Polymer Membrane in Proton Exchange Membrane Fuel Cells)

  • 이대웅;황병찬;임대현;정회범;유승을;구영모;박권필
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.338-343
    • /
    • 2019
  • 고분자전해질 연료전지에서 전해질막의 물이동과 함수율은 고분자막의 성능에 많은 영향을 미친다. 본 연구에서는 간단한 방법에 의해 물이동에 관한 고분자막의 물성(전기삼투계수, 물 확산계수)을 측정하고 이들을 이용해 막을 통한 물의 이동량과 이온전도도를 모델식에 의해 모사한 후 실험값과 비교하였다. 물이동의 구동력은 전기삼투와 확산만이 라고 본 1차원 정상상태 지배방정식을 매트랩으로 수치해석하였다. $144{\mu}m$ 두께의 고분자막의 전기삼투계수를 수소펌핑셀에서 구한 결과 1.11을 얻었다. 물확산계수를 상대습도의 함수로 나타냈고 물확산에 대한 활성화에너지는 $2,889kJ/mol{\cdot}K$였다. 이들 계수를 적용해 모사한 물이동량과 이온전도도 결과는 실험값과 잘 일치함을 보였다.

냉각계통 동적 예측을 위한 수전해 시스템 동적 모사 모델 (Dynamic Model of Water Electrolysis for Prediction of Dynamic Characteristics of Cooling System)

  • 윤상현;윤진원;황건용
    • 한국수소및신에너지학회논문집
    • /
    • 제32권1호
    • /
    • pp.1-10
    • /
    • 2021
  • Water electrolysis technology, which generates hydrogen using renewable energy resources, has recently attracted great attention. Especially, the polymer electrolyte membrane water electrolysis system has several advantages over other water electrolysis technologies, such as high efficiency, low operating temperature, and optimal operating point. Since research that analyzes performance characteristics using test bench have high cost and long test time, however, model based approach is very important. Therefore, in this study, a system model for water electrolysis dynamics of a polymer electrolyte membrane was developed based on MATLAB/Simulink®. The water electrolysis system developed in this study can take into account the heat and mass transfer characteristics in the cell with the load variation. In particular, the performance of the system according to the stack temperature control can be analyzed and evaluated. As a result, the developed water electrolysis system can analyze water pump dynamics and hydrogen generation according to temperature dynamics by reflecting the dynamics of temperature.

Functional Integration of Serial Dilution and Capillary Electrophoresis on a PDMS Microchip

  • Chang, Jun-Keun;Heo, Yun-Seok;Hyunwoo Bang;Keunchang Cho;Seok Chung;Chanil Chung;Han, Dong-Chul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권4호
    • /
    • pp.233-239
    • /
    • 2003
  • For the quantitative analysis of an unknown sample a calibration curve should be obtained, as analytical instruments give relative, rather than absolute measurements. Therefore, researchers should make standard samples with various known concentrations, measure each standard and the unknown sample, and then determine the concentration of the unknown by comparing the measured value to those of the standards. These procedures are tedious and time-consuming. Therefore, we developed a polymer based microfluidic device from polydimethylsiloxane, which integrates serial dilution and capillary electrophoresis functions in a single device. The integrated microchip can provide a one-step analytical tool, and thus replace the complex experimental procedures. Two plastic syringes, one containing a buffer solution and the other a standard solution, were connected to two inlet holes on a microchip, and pushed by a hydrodynamic force. The standard sample is serially diluted to various concentrations through the microfluidic networks. The diluted samples are sequentially introduced through microchannels by electro-osmotic force, and their laser-induced fluorescence signals measured by capillary electrophoresis. We demonstrate the integrated microchip performance by measuring the fluorescence signals of fluorescein at various concentrations. The calibration curve obtained from the electropherograms showed the expected linearity.