• Title/Summary/Keyword: Electro-mechanical system

Search Result 702, Processing Time 0.04 seconds

Network Time Protocol Extension for Wireless Sensor Networks (무선 센서 네트워크를 위한 인터넷 시각 동기 프로토콜 확장)

  • Hwang, So-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2563-2567
    • /
    • 2011
  • Advances in smart sensors, embedded systems, low-power design, ad-hoc networks and MEMS have allowed the development of low-cost small sensor nodes with computation and wireless communication capabilities that can form distributed wireless sensor networks. Time information and time synchronization are fundamental building blocks in wireless sensor networks since many sensor network applications need time information for object tracking, consistent state updates, duplicate detection and temporal order delivery. Various time synchronization protocols have been proposed for sensor networks because of the characteristics of sensor networks which have limited computing power and resources. However, none of these protocols have been designed with time representation scheme in mind. Global time format such as UTC TOD (Universal Time Coordinated, Time Of Day) is very useful in sensor network applications. In this paper we propose network time protocol extension for global time presentation in wireless sensor networks.

Query Processing using Partial Indexs based on Hierarchy in Sensor Networks (센서 네트워크에서 계층기반 부분 인덱스를 이용한 질의처리)

  • Kim, Sung-Suk;Yang, Sun-Ok
    • Journal of KIISE:Databases
    • /
    • v.35 no.3
    • /
    • pp.208-217
    • /
    • 2008
  • Sensors have a function to gather environment-related information operating by small-size battery in sensor networks. The issue related with energy is still an important in spite of the recent advancements in micro-electro-mechanical-system(MEMS) related techology. Generally it is assumed that replacement or rechargement of battery power in sensor is not feasible and a message send operation may spend at least 1000 times battery than a local operation. Thus, there have been several kinds of research efforts to lessen the number of unnecessary messages by maintaining the information of the other neighboring(or all) sensors. In this paper, we propose an index structure based on parent-children relationship to the purpose. Namely, parent node gathers the set of location information and MBA per child. It's named PH and may allow to process the range query with higher accurate and small size information. Through extensive experiments, we show that our index structure has better energy consumption.

The analysis on properties of IR emitter unit device fabricated by using MEMS technology for Infrared Scene Projector (MEMS 기술을 이용하여 제작한 적외선 영상 투사용 에미터 단위 소자의 특성 분석)

  • Park, Ki Won;Shin, Young Bong;Kang, In-Ku;Lee, Hee Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.31-36
    • /
    • 2017
  • In this paper, designed infrared (IR) emitter device for infrared scene projector (IRSP) which is used for evaluating the performance of IR sensor systems was simulated by using finite element analysis (FEA) tool and fabricated by using MEMS (Micro Electro-Mechanical System) technology. The performance of the fabricated IR emitter unit device was characterized in the vacuum chamber by using IR image microscope for MWIR($3{\sim}5{\mu}m$), which showed 423K apparent temperature (Tapp) and 22msec time constant (${\tau}$).

Characteristics Analysis of Linear Induction Motor Considering Airgap variation for Railway Transit (공극변화를 고려한 철도차량용 선형 유도전동기 특성 연구)

  • Lee, Byung-Song;Lee, Hyung-Woo;Park, Chan-Bae;Han, Kyung-Hee;Kwon, Sam-Young;Park, Hyun-June
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1610-1615
    • /
    • 2007
  • This paper presents a characteristics of linear induction motor considering airgap variation for railway transit in order to achieve high performance of the vehicle. The operating principle of a LIM(Linear induction motor) is identical to a rotary induction motor. Space-time variant magnetic fields are generated by the primary part across the airgap and induce the electro-motive force(EMF) in the secondary part, a conducting sheet. This EMF generates the eddy currents, which interact with the airgap flux and so produce the thrust force known as Loren's force. Even though the operating principal is exactly same as a rotary motor, the linear motor has a finite length of the primary or secondary parts and it causes static and dynamic end-effect which is the discontinuous airgap flux phenomenon. This end-effect causes the deterioration of the system performance, especially in high-speed operation. Another problem is that construction tolerance restricts the minimum airgap in order to prevent a collision between the primary part and the secondary reaction plate. More over, as the airgap length is getting smaller, the attraction force between the primary part and secondary parts is getting larger dramatically and the attraction force would be another friction against propulsion. Therefore, it is necessary to figure out the characteristics of linear induction motor considering airgap variation in order to achieve high performance of the vehicle. The dynamic model of LIM taking into account end-effects is derived. Then the modified mechanical load equation considering the effect of the attraction and thrust force according to the airgap variation is analyzed. The simulation results are presented to show the effect of the LIM according to the airgap variation.

  • PDF

Si-MEMS package Having a Lossy Sub-mount for CPW MMICs (손실층 Sub-mount를 갖는 CPW MMIC용 실리콘 MEMS 패키지)

  • 송요탁;이해영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.271-277
    • /
    • 2004
  • A Si(Silicon) MEMS(Micro Electro Mechanical System) package using a doped lossy Si carrier for CPW(Coplanar Waveguide) MMICs(Microwave and Millimeter-wave Integrated Circuits) is proposed in order to reduce parasitic problems of leakage, coupling and resonance. The proposed chip-carrier scheme is verified by fabricating and measuring a GaAs CPW on the two types of carriers(conductor-back metal, doped lossy Si) in the frequency from 0.5 to 40 ㎓. The proposed MEMS package using the lightly doped lossy(15 Ω$.$cm) Si chip-carrier and the HRS(High Resistivity Silicon, 15 ㏀$.$cm) shows the optimized loss and parasitic problems-free since the doped lossy Si-carrier effectively absorbs and suppresses the resonant leakage. The Si MEMS package for CPW MMICs has an insertion loss of only - 2.0 ㏈ and a power loss of - 7.5 ㏈ at 40 ㎓.

Effects of Blend Ratio and Heat Treatment on the Properties of the Electrospun Poly(ethylene terephthlate) Nonwovens

  • Kim Kwan Woo;Lee Keun Hyung;Lee Bong Seok;Ho Yo Seung;Oh Seung Jin;Kim Hak Yong
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.121-126
    • /
    • 2005
  • Semicrystalline poly(ethylene terephthalate) (cPET)/amorphous poly(ethylene terephthalate) with isophthalic acid (aPET) blends with 100/0, 75/25, 50/50, 25/75, and 0/100 by weight ratios were dissolved in a mixture of trifluoroacetic acid (TFA)/methylene chloride (MC) (50/50, v/v) and electrospun via the electrospinning technique. Solution properties such as solution viscosity, surface tension and electric conductivity were determined. The solution viscosity slightly decreased as aPET content increased, while there was no difference in surface tension with respect to aPET composition. The characteristics of the electro spun cPET/aPET blend nonwovens were investigated in terms of their morphology, pore size and gas permeability. All these measurements were carried out before and after heat treatment for various blend weight ratios. The average diameter of the fibers decreased with increasing aPET composition due to the decrease in viscosity. Also, the morphology of the electrospun cPET/aPET blend nonwovens was changed by heat treatment. The pore size and pore size distribution varied greatly from a few nanometers to a few microns. The gas permeability after heat treatment was lower than that before heat treatment because of the change of the morphology.

Study on the Fabrication of the Low Loss Transmission Line and LPF using MEMS Technology (MEMS 기술을 이용한 저 손실 전송선로와 LPF의 공정에 관한 연구)

  • 이한신;김성찬;임병옥;백태종;고백석;신동훈;전영훈;김순구;박현창
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1292-1299
    • /
    • 2003
  • In this paper, we fabricated new GaAs-based dielectric-supported air gapped microstriplines(DAMLs) using the surface MEMS and the LPF for Ka-band using the fabricated DAMLs. We elevated the signal lines from the substrate, in order to reduce the substrate dielectric loss and obtain low losses at millimeter-wave frequency band with wide impedance range. We fabricated LPF with DAMLs for Ka-band. Due to reducing the dielectric loss of DAMLs, the insertion loss of LPF can be reduced. Miniature is essential to integrate LPF with active devices, so that we fabricated LPF with the slot on the ground to reduce the size of the LPF. We compared a characteristic to LPF with the slot and LPF without the slot.

The Effects of $Y_{2}O_{3}$ and $Ga_{2}O_{3}$ Addtives on the Microstructure and Piezoelectric Properties of PNN-PZ-PT Ceramics (PNN-PZ-PT 세라믹스의 미세구조 및 암전특성에 대한 $Y_{2}O_{3}$$Ga_{2}O_{3}$의 첨가효과)

  • Kwon, Jeong-Ho;Choi, Hae-Yun;Jeong, Yeon-Hak;Kim, Il-Won;Song, Jae-Sung;Jeong, Soon-Jong;Lee, Jae-Shin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.334-337
    • /
    • 2002
  • In this study, the microstructure, dielectric and piezoelectric properties of $0.15Pb(Ni_{1/3}Nb_{2/3})O_3-0.85(PbZr_{0.5}Ti_{0.5})O_3$(0.15PNN-0.85PZT) ceramics having compositions near the morphotropic phase boundary(MPB) was investigated with respect to the variation of $Y_2O_3$ and $Ga_2O_3$ addition amount. The dielectric properties increased and piezoelectric properties decreased with increasing the amount of $Ga_2O_3$. The solubility limit of $Y_2O_3$ is 0.5mol% in this system. The electro-mechanical coupling factor$(K_p)$ and dielectric constant(${\varepsilon}_r$) were 58.6% and 1755 when the amount of $Y_2O_3$ are 0.5mol%.

  • PDF

Fabrication and packaging techniques for the application of MEMS strain sensors to wireless crack monitoring in ageing civil infrastructures

  • Ferri, Matteo;Mancarella, Fulvio;Seshia, Ashwin;Ransley, James;Soga, Kenichi;Zalesky, Jan;Roncaglia, Alberto
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.225-238
    • /
    • 2010
  • We report on the development of a new technology for the fabrication of Micro-Electro-Mechanical-System (MEMS) strain sensors to realize a novel type of crackmeter for health monitoring of ageing civil infrastructures. The fabrication of micromachined silicon MEMS sensors based on a Silicon On Insulator (SOI) technology, designed according to a Double Ended Tuning Fork (DETF) geometry is presented, using a novel process which includes a gap narrowing procedure suitable to fabricate sensors with low motional resistance. In order to employ these sensors for crack monitoring, techniques suited for bonding the MEMS sensors on a steel surface ensuring good strain transfer from steel to silicon and a packaging technique for the bonded sensors are proposed, conceived for realizing a low-power crackmeter for ageing infrastructure monitoring. Moreover, the design of a possible crackmeter geometry suited for detection of crack contraction and expansion with a resolution of $10{\mu}m$ and very low power consumption requirements (potentially suitable for wireless operation) is presented. In these sensors, the small crackmeter range for the first field use is related to long-term observation on existing cracks in underground tunnel test sections.

Thrust Force Characteristics Analysis of Linear Induction Motor Considering Airgap variation for Railway Transit (공극변화를 고려한 철도차량용 선형 유도전동기 특성 연구)

  • Lee, Byung-Song
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1903-1908
    • /
    • 2008
  • This paper presents a characteristics of linear induction motor considering airgap variation for railway transit in order to achieve high performance of the vehicle. The operating principle of a LIM(Linear induction motor) is identical to a rotary induction motor. Space-time variant magnetic fields are generated by the primary part across the airgap and induce the electro-motive force(EMF) in the secondary part, a conducting sheet. This EMF generates the eddy currents, which interact with the airgap flux and so produce the thrust force known as Loren's force. Even though the operating principal is exactly same as a rotary motor, the linear motor has a finite length of the primary or secondary parts and it causes static and dynamic end-effect which is the discontinuous airgap flux phenomenon. This end-effect causes the deterioration of the system performance, especially in high-speed operation. Another problem is that construction tolerance restricts the minimum airgap in order to prevent a collision between the primary part and the secondary reaction plate. More over, as the airgap length is getting smaller, the attraction force between the primary part and secondary parts is getting larger dramatically and the attraction force would be another friction against propulsion. Therefore, it is necessary to figure out the characteristics of linear induction motor considering airgap variation in order to achieve high performance of the vehicle. The dynamic model of LIM taking into account end-effects is derived. Then the modified mechanical load equation considering the effect of the attraction and thrust force according to the airgap variation is analyzed. The simulation results are presented to show the effect of the LIM according to the airgap variation.

  • PDF