• 제목/요약/키워드: Electro-mechanical property

검색결과 69건 처리시간 0.029초

박막의 기계적 물성을 위한 새로운 인장 시편 및 인장 시험기 (A Novel Tensile Specimen and Tensile Tester for Mechanical Properties of Thin Films)

  • 박준협;김윤재
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.644-650
    • /
    • 2007
  • Mechanical property evaluation of micrometer-sized structures is necessary to help design reliable microelectromechanical systems(MEMS) devices. Most material properties are known to exhibit dependence on specimen size and such properties of microscale structures are not well characterized. This paper describes techniques developed for tensile testing of thin film used in MEMS. Epi-polycrystalline silicon is currently the most widely used material, and its tensile strength has been measured as 1.52GPa. We have developed a tensile testing machine for testing microscale specimen using electro-magnetic actuator. The field magnet and the moving coil taken from an audio-speaker were utilized as the components of the actuator. Structure of specimen was designed and manufactured for easy handling and alignment. In addition to the static tensile tests, it is described that new techniques and procedures can be adopted for high cycle fatigue test of a thin film.

소결방법에 따른 다공성 티타늄 임플란트의 기계적 특성 (Mechanical property of porous Ti implants by sintering method)

  • 김영훈
    • 대한치과기공학회지
    • /
    • 제34권3호
    • /
    • pp.221-226
    • /
    • 2012
  • Purpose: This study was performed to compare mechanical properties for sintering methods of porous Ti implants. Methods: The specimens of Ti implant were fabricated by several sintering methods. One of them is spark plasma sintering(SPS). Another is electro discharge singering(EDS) and the other is high vacuum sintering(HVS). Mechanical properties of porous Ti implants were evaluated by universal testing machine(UTM) and their fracture surface was examined under a sanning electron microscope(SEM). Results: The tensile strength was in a range of 71 to 230 MPa, and Young's modulus was in a range of 11 to 21 Gpa. It matched with range of cortical bone. Conclusion: Mechanical properties of porous Ti implants were similar to human bone. It was shown that sintering methods of spherical powders can efficiently produce porous Ti implants with various porosities. Porous metals will be commonly used in orthopedic and dental application despite of initial focus has been on bioceramics.

대입열 EGW 용접부 물성에 대한 연구 (A study of the mechanical properties on the high heat input Electro Gas Welding process)

  • 성희준;구연백;김경주;김대순
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 추계학술발표대회 개요집
    • /
    • pp.183-184
    • /
    • 2004
  • High capacity container carrier has been considered for many decades to transport the more containers at the same time. Therefore, it is required for high capacity container ship to be applied thicker plate to accomodate a number of containers compared to that of general container ship. To maintain the same productivity of this thicker plate, new welding process should be considered. One of the process for vertical-up position is 2 electrodes EGW(Electro Gas Welding). 2 ectrodes EGW was applied and evaluated whether it can be applicable or not. The heat input used for 72mm thick plate was 520k11cm. from the mechanical test, it is considered that this process can be applicable, showing satisfaction of mechanical properties such as tensile strength, elongation and impact property.

  • PDF

Mechanical properties, Biodegradability and Biocompatibility of Coronary Bypass Artery with PCL Layer and PLGA/Chitosan Mats Using Electrospinning

  • Nguyen, Thi-Hiep;Min, Young-Ki;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.45.2-45.2
    • /
    • 2009
  • A coronary graft fabricated from PLGA poly (lactic-co-glycolic acid) and chitosan electros puns deposited on poly caprolactone (PCL) electro spun tube. Mechanical properties of tube were evaluated through extruder machine depending on thickness of vessel wall. Biocompatible properties were evaluated by SEM morphology, amount of cell counting and MTT assay method for depending on culture days (1, 3, 5 days). MTT assay, counting cell and SEM morphology showed that cells were fast growth and immigration after 5 days. Biodegradability was monitored through loss weigh method for incubator days.

  • PDF

MEMS 소재의 기계적 특성 평가를 위한 인장형 시편 및 시험기 제작 (A Novel Tensile Specimen and Test Machine for Mechanical Properties of MEMS Materials)

  • 박준협;김정엽;이창승;좌성훈;송지호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.258-263
    • /
    • 2004
  • Mechanical property evaluation of micrometer-sized structures is necessary to help design reliable microelectromechanical systems(MEMS) devices. Most material properties are known to exhibit dependence on specimen size and such properties of microscale structures are not well characterized. This paper describes techniques developed for tensile testing of materials used in MEMS. Epi-polycrystalline silicon is currently the most widely used material, and its tensile strength has been measured as 1.52GPa. We have developed an uniaxial testing machine for testing microscale specimen using electro-magnetic actuator. The field magnet and the moving coil taken from an audio-speaker were utilized as the components of the actuator. Structure of specimen was designed and manufactured for easy handling and alignment. In addition to the static tensile tests, new techniques and procedures for measuring strength are described.

  • PDF

생체적합형 고분자를 이용한 박막형 이동기의 제작 및 특성평가 (Fabrication and Performance Evaluation of Diaphragm-type Actuators using Biocompatible polymer)

  • 정영대;정해도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1254-1258
    • /
    • 2007
  • Electro-active polymer (EAP), one of the smart materials, is a new alternative offering ultra-precise movements and bio-compatibility. We present the results of the design, fabrication, and performance evaluation of a fabricated diaphragm-type polymer actuator using segmented polyurethane(SPU). This paper illustrates the relationship between the elastic modulus and maximum deflection as a key property of the Maxwell stress effect and also presents the relationship between the dielectric constant and maximum deflection as a key property of the electrostriction effect, especially in polymer actuators using SPU. A diaphragm-type actuator was used to induce an equation of the vertically distributed load by using a fully clamped circular plate as the boundary condition. To verify the equation, the results were compared to the data measured from load cell. In the near future, a low-cost check valves and bio-robot can be applied by its actuators.

  • PDF

멀티노즐/보조전극-Electrohydrodynamic 공정을 통한 PCL 나노파이버 제작 (Electrohydrodynamic Process Supplemented by Multiple-Nozzle and Auxiliary Electrodes for Fabricating PCL Nanofibers)

  • 윤현;김근형;김완두
    • 폴리머
    • /
    • 제32권4호
    • /
    • pp.334-339
    • /
    • 2008
  • 최근 전기방사공정은 다양한 고분자의 마이크로 및 나노 크기 섬유를 만드는 기술로서 널리 사용되어 왔다. 일반적으로 많은 연구자들에 의하면, 다중노즐 전기방사공정은 노즐들 사이의 전기장 간섭효과 때문에 짧은 시간에 높은 생산성을 갖기 어려웠다. 이러한 문제를 극복하기 위하여 본 연구에서는 다양한 보조전극을 이용한 다중노즐 전기방사공정을 개발하였다. 본 연구에서 사용된 물질은 바이오소재로서 많이 사용되고 있는 poly($\varepsilon$-carprolactone)(PCL)을 사용하였다. 다중노즐 시스템의 영향을 확인하기 위하여 전기방사의 안정성, 다중노즐을 사용하였을 때의 생산성 및 제조된 나노섬유의 크기와 안정성을 보조전극을 사용하였을 때와 사용하지 않았을 때를 비교하였다. 결과적으로 보조전극을 사용한 노즐의 안정성이 사용하지 않은 노즐에 비해 전기방사 안정성과 우수한 생산성을 보였다.

Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects

  • Khorasani, Mohammad;Eyvazian, Arameh;Karbon, Mohammed;Tounsi, Abdelouahed;Lampani, Luca;Sebaey, Tamer A.
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.331-343
    • /
    • 2020
  • In this paper, based on the CPT, motion equations for a sandwich plate containing a core and two integrated face-sheets have derived. The structure rests on the Visco-Pasternak foundation, which includes normal and shear modules. The piezo-magnetic core is made of CoFe2O4 and also is subjected to 3D magnetic potential. Two face sheets at top and bottom of the core are under electrical fields. Also, in order to obtain more accuracy, the effect of flexoelectricity has took into account at face sheets' relations in this work. Flexoelectricity is a property of all insulators whereby they polarize when subject to an inhomogeneous deformation. This property plays a crucial role in small-scale rather than macro scale. Employing CPT, Hamilton's principle, flexoelectricity considerations, the governing equations are derived and then solved analytically. By present work a detailed numerical study is obtained based on Piezoelectricity, Flexoelectricity and modified couple stress theories to indicate the significant effect of length scale parameter, shear correction factor, aspect and thickness ratios and boundary conditions on natural frequency of sandwich plates. Also, the figures show that there is an excellent agreement between present study and previous researches. These finding can be used for automotive industries, aircrafts, marine vessels and building industries.

유압밸브 적용을 위한 ER 유체의 역학적 특성 고찰 (Investigation of Mechanical Characteristics of ER Fluids for Application in Hydraulic Valve)

  • 김옥삼;이현창;박우철
    • 한국공작기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.84-90
    • /
    • 2001
  • The electro-reheoligical(ER) effect refers to the abrupt change in viscosity in certain suspensions on application of an electric field. This paper presents experimental results on material properties of an ER fluids subjected to electrical fatigues. As a first step, two types of EF fluids are made of arabic gum and methyl cellulose(MC) choosing 25% of parti-cle weight-concentration. Following the construction of test mechanism for electrical durability of ER fluid, the dynamic yield shear stress and current density of the ER fluids are experimentally distilled as a function of electric field. The yield shear stress of operated ER fluids are distilled and compared with those of unused ER fluids.

  • PDF

ER브레이크 작동기를 이용한 능동 장력 제어 (Active Tension Control Using an ER Brake Actuator)

  • Park, S.B.;Kim, G.W.;Cheong, C.C.
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.102-111
    • /
    • 1996
  • This paper presents a proof-of-concept investigation on an active tension control using an ER (electro-rheological) brake actuator. Firstly, an ERF (electro-rheological fluid) which has an inherent reversible feature from Newtonian fluid to Bingham fluid upon applying an electric field is composed, and its property is tested to obtain intrinsic parameters of the Bingham model. An appropriate size of the ER brake is manufactured on the basis of the Bingham model, and dynamic characteristics of the brake are experimentally identified. After formulating a governing equation of motion of the tension control system, a sliding mode controller is designed to achieve a certain desired level of tension. Both simulation and experimental works are undertaken in order to demonstrate the efficiency and feasibility of the proposed active tension control method.

  • PDF