• 제목/요약/키워드: Electro-mechanical Actuator

검색결과 190건 처리시간 0.023초

선형홀센서를 이용한 전기식 구동장치의 속도 신호 구현 (A New Velocity Measurement Method using Linear Type Hall-effect Sensor for Electro-mechanical Fin Actuator)

  • 구정회;송치영
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.70-75
    • /
    • 2010
  • The objective of this paper is to propose a new velocity measurement method for an electro-mechanical fin actuator. The model of the electro-mechanical fin actuator includes uncertainties such as unknown disturbances and parameter variations in flight condition. So, an electro-mechanical fin actuator system needs robust control algorithm which requires not only position information but also velocity information. Usually, analog tachometers have been used for velocity feedback in an electro-mechanical fin actuator. However, using these types of sensors have problems such as the cost, space, and malfunction. These problems lead to propose a new velocity measurement method using linear type Hall-effect sensor. In order to verify the proposed method, several experiments are performed using Model Following Sliding Mode Controller(MFSMC). It is shown that the MFSMC with a new velocity measurement method using linear type Hall-effect sensor can satisfy the requirements without using of velocity sensor.

Evaluation of Structural Safety of Electro-Mechanical Linear Actuator and Load Simulator with Plate Spring

  • Kim, Dong-Hyeop;Kim, Young-Cheol;Kim, Sang-Woo;Lee, Jong Whan
    • 항공우주시스템공학회지
    • /
    • 제14권6호
    • /
    • pp.18-25
    • /
    • 2020
  • This study investigated the structural behaviors and safety of an electro-mechanical linear actuator and a load simulator with a plate spring. The material and dimensions of the plate spring were determined by theoretically calculating the stress and torsional angle for the rating load of the actuator. Thereafter, a flexible multibody dynamics (FMBD) analysis was conducted on the linear actuator and load simulator to confirm the performance of the load simulator and acquire the reaction forces acting on the actuator and simulator. The structural safety of the linear actuator and load simulator was evaluated via finite element analysis using the aforementioned reaction forces. Consequently, the proposed linear actuator and load simulator were determined to be structurally safe; however, the safety factors for the actuation rod and the housing on the actuator were excessively high. Therefore, the weight and cost must be reduced to improve their design parameters in the future.

Analysis of an Electromagnetic Actuator for Circuit Breakers

  • Shin, Dong-Kyu;Choi, Myung-Jun;Kwon, Jung-Lok;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.346-352
    • /
    • 2007
  • In this paper, we present an analysis of dynamic characteristics of an electromagnetic actuator for circuit breakers. It is indispensable to simultaneously analyze magnetic, electric, and mechanical phenomena to obtain the dynamic characteristics of the electromagnetic actuator because these phenomena are closely related to each other in an electromagnetic actuator system. The magnetic equations are computed by using the finite element method (FEM). The electric equations and the mechanical equations, which include the time derivative terms, are calculated by using the time difference method (TDM). The calculated results, which have been obtained by means of the FEM and the TDM, are presented with experimental data.

M&S를 이용한 항공기용 통합형 전기식 구동장치의 동적 안전성 연구 (The Study of Dynamic Safety Using M&S for Integrated Electro-mechanical Actuator Installed on Aircraft)

  • 이석규;이병호;이증;강동석;최관호
    • 한국소음진동공학회논문집
    • /
    • 제25권2호
    • /
    • pp.108-115
    • /
    • 2015
  • Electro-mechanical actuator installed on aircraft consists of a decelerator which magnifies the torque in order to rotate an axis connected with aircraft control surface, a control section which controls the motor assembly through receiving orders from cockpit and a motor assembly which rotates the decelerator. Electro-mechanical actuator controls aircraft altitude, position, landing, takeoff, etc. It is an important part of a aircraft. Aircraft maneuvering causes vibrations to electro-mechanical actuator. Vibrations may result in structural fatigue. For that reason, it is necessary to analyze the system structural safety. In order to analyze the system structural safety. It is needed reasonable finite element model and structural response stress closed to real value. In this paper, analytic model is derived by using the simplified finite element model, and damping ratio which is closely related to response stress is derived by using modal test. So, we developed analytic model in less than 10 % error rate, compared with modal test. Vibration response stress close to real value was estimated from analytic model modified with modal experimental damping ratio. Estimation method for damping ratio with empirical formula was suggested partly. Finally, It was proved that electro-mechanical actuator had reasonable structure margin of safety at environmental random $3{\sigma}$ stress during life cycle.

비례솔레노이드 액추에이터를 이용한 압력제어밸브 (Pressure Control Valve using Proportional Electro-magnetic Solenoid Actuator)

  • 함영복;박평원;윤소남
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1202-1208
    • /
    • 2006
  • This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed.

Effect of Room Temperature Ionic Liquids Adsorption on Electromechanical Behavior of Cellulose Electro-Active Paper

  • Mahadeva, Suresha K.;Yi, Chen;Kim, Jae-Hwan
    • Macromolecular Research
    • /
    • 제17권2호
    • /
    • pp.116-120
    • /
    • 2009
  • The cellulose smart material called electro-active paper (EAPap) is made by regenerating cellulose. However, the actuator performance is degraded at low humidity levels. To solve this drawback, EAPap bending actuators were made by activating wet cellulose films in three different room-temperature ionic liquids: l-butyl-3-methylimidazolium hexaflurophosphate ($BMIPF_6$), 1-butyl-3-methylimidazolium chloride (BMICL) and 1-butyl-3-methylimidazolium tetrafluroborate ($BMIBF_4$). In the results, the actuator performance was dependent on the type of anions in the ionic liquids, in the order of $BF_4$>Cl>$PF_6$. The BMIBF 4-activated actuator showed the maximum displacement of 3.8 mm with low electrical power consumption at relatively low humidity. However, the BMICL-activated actuator showed a slight degradation of actuator performance. Further performance and durability improvement will be possible once various ionic liquids are blended with cellulose.

Study on Electro-Mechanical Coupling Effect of EAPap Actuator

  • Zhao, Lijie;Li, Yuanxie;Kim, Heung-Soo;Kim, Jae-Hwan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.640-643
    • /
    • 2006
  • In this paper, electro-mechanical coupling of cellulose-based Electro-Active Paper (EAPap) actuator is investigated by measuring induced strain and mechanical properties with and without electric excitation. The maximum induced in-plane strain is measured at the orientation angle of 45? samples. The elastic modulus and strength of EAPap are increased with electric excitation and the orientation angle of $45^{\circ}$ samples shows the largest increment of mechanical properties. From the observations, shear piezoelectricity is considered as the major piezoelectric mode of EAPap.

  • PDF

Flexible Patch Rectennas for Wireless Actuation of Cellulose Electro-active Paper Actuator

  • Yang, Sang-Yeol;Kim, Jae-Hwan;Song, Kyo-D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.954-958
    • /
    • 2012
  • This paper reports a flexible patch rectenna for wireless actuation of cellulose electro-active paper actuator (EAPap). The patch rectenna consists of rectifying circuit layer and ground layer, which converts microwave to dc power so as to wirelessly supply the power to the actuator. Patch rectennas are designed with different slot length at the ground layer. The fabricated devices are characterized depending on different substrates and polarization angles. The EAPap integrated with the patch rectenna is actuated by the microwave power. Detailed fabrication, characterization and demonstration of the integrated rectenna-EAPap actuator are explained.

폴리아닐린이 코팅된 Electro-Active Paper 작동기 성능평가 (Performance Characterization of Polyaniline Coated Electro-Active Paper Actuator)

  • 고현우;문성철;적림동;김기백;김재환
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.658-664
    • /
    • 2013
  • Bending actuators composed of cellulose with an electrically conducting polymer (CP) are fabricated and their performance is characterized in the air. Two different counter ions, perchlorate and tetrafluoroborate are used as dopant ions in the polyaniline CP processing. CP-cellulose-CP trilayer and CP-cellulose bilayer samples are fabricated with different dopant ions, and their actuation performance is evaluated in terms of tip displacement, blocked force and electrical power consumption along with the humidity level and actuation frequency. The trilayer samples substantially enhanced the tip displacement compared to the bilayer ones. The actuation performance of the trilayer actuator is three times better than that of original cellulose electro-active paper (EAPap) actuator. The displacement and blocked force of CP-EAPap actuators are dependent on the humidity and frequency.

Electro-Active-Paper Actuator Made with LiCl/Cellulose Films: Effect of LiCl Content

  • Wang, Nian-Gui;Kim, Jae-Hwan;Chen, Yi;Yun, Sung-Ryul;Lee, Sun-Kon
    • Macromolecular Research
    • /
    • 제14권6호
    • /
    • pp.624-629
    • /
    • 2006
  • The cellulose-based, Electroactive Paper (EAPap) has recently been reported as a smart material with the advantages of lightweight, dry condition, biodegradability, sustainability, large displacement output and low actuation voltage. However, it requires high humidity.. This paper introduces an EAPap made with a cellulose solution and lithium chloride (LiCl), which can be actuated in room humidity condition. The fabrication process, performance test and effect of LiCl content of the EAPap actuator are illustrated. The bending displacement of the EAPap actuators was evaluated with actuation voltage, frequency, humidity and LiCl content changes. At a LiCl/ cellulose content of 3:10, the displacement output was maximized at a room humidity condition. Even though the displacement output was less than that of a high humidity EAPap actuator, the mechanical power output was not reduced due to the increased resonance frequency, which is promising for developing EAPap actuators that are less sensitive to humidity.