• Title/Summary/Keyword: Electro-mechanical

Search Result 1,587, Processing Time 0.034 seconds

CONTROL PERFORMANCE IMPROVEMENT OF AN EMV SYSTEM USING A PM/EM HYBRID ACTUATOR

  • Ahn, H.J.;Chang, J.U.;Han, D.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.429-436
    • /
    • 2007
  • In this study, we improved control performance of an EMV (electromechanical valve) system using a PM/EM (permanent magnet/electromagnet) hybrid EMA (electromagnetic actuator) and showed the feasibilities of both soft landing and fast transition of the EMV system using a simple PID control. The conventional EMV systems using only EM show significant nonlinear characteristics. Therefore, it is very difficult to control the valve position and several complex control schemes are used. This paper focused on the control performance improvement using a PM/EM hybrid actuator. In particular, a PM is used as a key design parameter such as a bias current of a magnetic bearing in order to improve the linear characteristic of the actuator, although most PM/EM hybrid actuators use a PM as a power saver during valve-open and -closed states. First, a FE (finite element) analysis was performed to confirm its linear static force characteristics. Then, both a test rig and a valve control system were built in order to prove experimentally the control performance improvement of the actuator. Finally, feasibilities of both soft landing and fast transition of the system were shown experimentally through gain-scheduled PID (proportional derivative integral) control.

An Experimental Study on Control System Performance of an Electro-Hydraulic Copying Machine (전기 유압식 모방절삭 기계 의 제어성능 에 관한 연구)

  • 윤지섭;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.104-110
    • /
    • 1984
  • An electro-hydraulic copying system is developed and its performance is experimentally investigated. As compared with a mechanical hydraulic coping system, this system has a basic difference in that; (1) the stylus movement is converted into an electrical signal via a position transducer. (2)the actuator displacement is also measured by a position sensing element, which serves as a feedback signal. Since the system parameters affect the control performance, the response characteristics such as percentage overshoot, rise time, settling time and steady state error are experimentally obtained under variation of these variables. The system parameter include supply pressure, servo amplifier gain and feedback gain. The experimental result shows that the cutting tool follows a stylus input motion to a desirable accuracy. The implication of this result indicates that the developed system can enhance the copying accuracy of the conventionally used mechanical type of hydraulic copying system.

Design of Magneto-Rheological Clutch Coil Operation Unit using Electro Magnetic Field Analysis (전자기장 해석을 이용한 자기점성 유체 클러치 코일 작동부 설계)

  • Song, Jun-Han;Choi, Dook-Hwan;Chun, Chong-Keun;Kwon, Young-Chul;Lee, Tae-Haeng
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.22-28
    • /
    • 2009
  • Recently, there has been an active study about smart fluid to control the vibration, in which MR fluid is evaluated as most efficient because it can generate different bonding forces based on the intensity of the external magnetic fields. This paper attempts to find a mechanism that, under limited conditions during a clutch production that uses such dynamic characteristic, defects the maximum intensity of electromagnetism. Using the finite element analysis program, we predicted a change within the bonding force of the MR fluid occurring inside the clutch when it is subjected to an increased electric current. In addition, we analyzed the change in the magnetic intensity when the coil comprising the coil control center is switched to multiple lines from the standard single line, to find a mechanism that can maximize the effect. Based on this analysis, we developed the clutch and tested its function, hoping to widen future MR fluid's range of application.

Characteristic Accelerated Aging Assessment for Coolant Rubber Hose of Automotive Radiator (자동차 냉각기 고무호스의 가속 노화거동 평가)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Kang, Bong-Sung;Shin, Sei-Moon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.27-31
    • /
    • 2006
  • Rubber hoses for automobile radiators are apt to degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. The aging behaviors of the skin part of the hoses due to thermo-oxidative and electro-chemical stresses were experimentally analyzed. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain as the aging time and temperature were large. On account of the penetration of coolant liquid into the skin part the weight of rubber specimens influenced by electro-chemical degradation (ECD) test increased, whereas their failure strain and IRHD hardness decreased. The hardness decreased further as the test site on the hose skin approached to the negative pole.

  • PDF

Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation

  • Mohammadimehr, Mehdi;Arshid, Ehsan;Alhosseini, Seyed Mohammad Amin Rasti;Amir, Saeed;Arani, Mohammad Reza Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.683-702
    • /
    • 2019
  • The present study aims to analyze the magneto-electro-elastic (MEE) vibration of a functionally graded carbon nanotubes reinforced composites (FG-CNTRC) cylindrical shell. Electro-magnetic loads are applied to the structure and it is located on an elastic foundation which is simulated by visco-Pasternak type. The properties of the nano-composite shell are assumed to be varied by temperature changes. The third-order shear deformation shells theory is used to describe the displacement components and Hamilton's principle is employed to derive the motion differential equations. To obtain the results, Navier's method is used as an analytical solution for simply supported boundary condition and the effect of different parameters such as temperature variations, orientation angle, volume fraction of CNTs, different types of elastic foundation and other prominent parameters on the natural frequencies of the structure are considered and discussed in details. Design more functional structures subjected to multi-physical fields is of applications of this study results.

Finite Element Model based on Strain Tests for Predicting Bending Strength of Small Gears for Aircraft

  • Kim, Taehyung;Seok, Taehyeon;Seol, Jin-woon;Lee, Byung-ho;Kwon, Byung-gi;Choi, Jong-yoon
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.91-99
    • /
    • 2020
  • This study proposes a finite element (FE) model for predicting the bending strength of small gears used in electro-mechanical actuators for aircraft. First, a strain gauge was attached to the tooth root of test gear, and the strain was measured. Subsequently, the FE model was applied to calculate the strain of the test gear, and the modeled strain was compared with the experimental strain. The results confirmed that the FE strain was very close to the experimental strain and the FE model was valid. This FE model was extended to the bending strength analysis of several small gear tooth models. The bending strengths of all the tooth models were almost identical to the ISO theoretical bending strength. Finally, the FE model was validated and the reliability of the modeled bending strength was evaluated through the strain measurement experiment.

An analytical study on free vibration of magneto electro micro sandwich beam with FG porous core on Vlasov foundation

  • Kazem Alambeigi;Mehdi Mohammadimehr;Mostafa Bamdad
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.423-439
    • /
    • 2023
  • The aim of this paper is to investigate the free vibration behavior of the micro sandwich beam composing of five layers such as functionally graded (FG) porous core, nanocomposite reinforced by carbon nanotubes (CNTs) and piezomagnetic/piezoelectric layers subjected to magneto electrical potential resting on silica aerogel foundation. The effect of foundation has been taken into account using Vlasov model in addition to rigid base assumption. For this purpose, an iterative technique is applied. The material properties of the FG porous core and FG nanocomposite layers are considered to vary throughout the thickness direction of the beams. Based on the Timoshenko beam theory and Hamilton's principle, the governing equations of motion for the micro sandwich beam are obtained. The Navier's type solution is utilized to obtain analytical solutions to simply supported micro sandwich beam. Results are verified with corresponding literatures. In the following, a study is carried out to find the effects of the porosity coefficient, porous distribution, volume fraction of CNT, the thickness of silica aerogel foundation, temperature and moisture, geometric parameters, electric and magnetic potentials on the vibration of the micro sandwich beam. The results are helpful for the design and applications of micro magneto electro mechanical systems.

Biomimetic Actuator and Sensor for Robot Hand (로봇 손용 인체모방형 구동기 및 센서)

  • Kim, Baek-Chul;Chung, Jinah;Cho, Hanjoung;Shin, Seunghoon;Lee, Hyongsuk;Moon, Hyungpil;Choi, Hyouk Ryeol;Koo, Jachoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1497-1502
    • /
    • 2012
  • To manufacture a robot hand that essentially mimics the functions of a human hand, it is necessary to develop flexible actuators and sensors. In this study, we propose the design, manufacture, and performance verification of flexible actuators and sensors based on Electro Active Polymer (EAP). EAP is fabricated as a type of film, and it moves with changes in the voltage because of contraction and expansion in the polymer film. Furthermore, if a force is applied to an EAP film, its thickness and effective area change, and therefore, the capacitance also changes. By using this mechanism, we produce capacitive actuators and sensors. In this study, we propose an EAP-based capacitive sensor and evaluate its use as a robot hand sensor.

Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdalla, Waleed S.;Kabeel, Abdallah M.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.141-151
    • /
    • 2020
  • This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long-range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin-Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler-Bernoulli nanobeam are derived by Hamilton's principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell's equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2 ≤ α ≤ 0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).

An Efficient Key management for Wireless Sensor Network (무선센서 네트워크를 위한 효율적인 키 관리 연구)

  • Park, Sung-Kon
    • Journal of Digital Contents Society
    • /
    • v.13 no.1
    • /
    • pp.129-139
    • /
    • 2012
  • Recently, the smart sensor technologies are rapidly developing in accordance with the technology of implementation in small-size, low-cost, and low power consumption. With these sensor technologies, especially with MEMS and NEMS, the researches on the WSN are actively performing. For the WSN, a network security function is essential even it requires high physical resource level. But the WSN with the smart sensor technologies could not be provided with enough resources for the function because of limited size, computing-power, low-power, and etc. In this paper, we introduce security and key-management protocols of WSN.