• Title/Summary/Keyword: Electro-Hydraulic System

Search Result 245, Processing Time 0.027 seconds

Development of the HPM System to Improve Efficiency of the Hydraulic Excavator (유압식 굴삭기 효율 향상을 위한 HPM 시스템 개발)

  • Kwon, Yong Cheol;Lee, Kyung Sub;Kim, Sung Hun;Koo, Byoung Kook
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • The HPM (High-speed Power Matching) system is an electro-hydraulic control system. It directly controls the swash plate of the pump by selecting four-loop logic based on joystick signals, pump flow, and pressure signal to improve the efficiency and controllability of construction machines. In the NFC (Negative Flow Control) system, a typical pump control system using conventional open center type MCV, the loss is continuously generated by flow through the center bypass line even when the excavator is not in operation. Also, due to the slow response of the pump that indirectly controls the flow rate using the pressure regulator, peak pressure occurs at the start or stop of the operation. Conversely, the HPM system uses an MCV without center-by-pass flow path and the swash plate of a pump for the HPM is controlled by a high-speed proportional flow control valve. As a result, the HPM system minimizes energy loss in standby state of the excavator and enables peak pressure control through rapid electro-hydraulic control of a pump. In this paper, the concept of the HPM system algorithm is introduced and the hydraulic system efficiency is compared with the NFC system using the excavator SAT (System Analysis Tool).

Modeling and testing for hydraulic shock regarding a valve-less electro-hydraulic servo steering device for ships

  • Jian, Liao;Lin, He;Rongwu, Xu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.318-326
    • /
    • 2015
  • A valve-less electro-hydraulic servo steering device (short: VSSD) for ships was chosen as a study object, and its mathematic model of hydraulic shock was established on the basis of flow properties and force balance of each component. The influence of system structure parameters, changing rate of motor speed and external load on hydraulic shock strength was simulated by the method of numerical simulation. Experiment was designed to test the hydraulic shock mathematic model of VSSD. Experiment results verified the correctness of the model, and the model provided a correct theoretical method for the calculation and control of hydraulic shock of valve-less electro-hydraulic servo steering device.

A Study on the Position Control of an Electro-Hydraulic Servomechanism Using Variable Structure System (가변구조를 이용한 전기-유압서보계의 위치제어에 관한 연구)

  • 허준영;권기수;하석홍;조겸래;이진걸
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.213-220
    • /
    • 1989
  • This paper describes the application of the variable structure control(VSC) concept for the position control of an electro-hydraulic servomotor system. The basic philosopy of VSC is that the structure of the feedback control is altered as the state crosses discontinuity surfaces in the state space with the result that certain desirable properties are achieved. The switching of the control function yields total(or selective) invariance to system parameter variations and disturbances, and closed loop eigen value placement in time-varing and uncertain systems. The control scheme is derived, implemented and tested in the laboratory where analog controller have been used to control the representive servosystem. The control system schematics are given and simple results are shown for illustration. And the results of variable structure system for the electro-hydraulic servomotor were compared to that of the fixed structure system when load disturbance and system parameter variation exists.

Real-time Approximation of a Hydraulic Servo System Using a Recurrent Neural Network with 2-D Learning Algorithm (2차원 학습 회귀적 신경망을 이용한 전기.유압 서보시스템의 실시간 추종)

  • 정봉호;곽동훈;이춘태;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.94-100
    • /
    • 2003
  • This paper presents the experiments on the approximation of a hydraulic servo system using a real time recurrent neural networks (RTRN) with time varying weights. In order to verify the effectiveness of the RTRN algorithm in hydraulic servo system, we design the experimental hydraulic system and implemented the real time approximation of system output. Experimental results show that approximated output of the RTRN well follows the position trajectory of the electro-hydraulic servo system. And also it is verified that the 2-D RNN can be implemented in sampling time even though high sampling frequency experimentally.

A study on design and control of hydraulic test rig for performance evaluation of active suspension system (능동 현가시스템의 성능평가를 위한 유압식 시험기의 설계 및 제어에 관한 연구)

  • 손영준;이광희;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1445-1449
    • /
    • 1996
  • To evaluate of active suspension, it is necessary for special equipment - so called Test Rig which can perfectly realize the road condition and the impact from the road. And most of the test rig systems controlling force accurately and rapidly consist of electro-hydraulic servo mechanism, and they need robust controller which can endure outer road change. But in the case of PID controller, we should choose its best gains by trial and error method, and once its gains are fixed, they cannot get changed, so we should reset PID controller gains respectively when the road is changed. Therefore based on the load pressure feedback compensation method, our aim at constructing electro-hydraulic test rig is not affected by various road disturbance.

  • PDF

A Study on Analysis of Frequency Response with Hydraulic Circuit Analysis Module (유압 회로 해석 모듈을 이용한 주파수 응답 해석에 관한 연구)

  • 전봉근;송창섭;이용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.581-584
    • /
    • 1995
  • The frequency response of a electro-hydraulic servo(EHS) system is studied. The frequensy response characteristics of the EHS system obtained by linerization method, nonlinerar simulation method, and experimentation are compared ane another. It is found that the frequency response of the EHS is consistent when input signal applied is very small, but that is deviated as input signal becomes large.

  • PDF

A Study on Model Identification of Electro-Hydraulic Servo Systems (전기-유압 서보 시스템의 모델규명에 관한 연구)

  • 엄상오;황이철;박영산
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.907-914
    • /
    • 1999
  • This paper studies on the model identification of electro-hydraulic servo systems, which are composed of servo valves, double-rod cylinder and load mass. The identified plant is described as a discrete-time ARX or ARMAX model which is respectively obtained from the identification algorithms of least square error method, instrumental variable method and prediction error method. where a nominal model and the variation of model parameters are quantitatively evaluated.

  • PDF

The Analysis of Dynamic Characteristics and the Control of Compressed Gas Expulsion System Using Electro-Hydraulic Servo Valve (전기.유압 서보밸브를 이용한 압축가스 방출시스템의 동특성 해석 및 제어)

  • Kim Y.M.;Kim J.K.;Han M.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.710-714
    • /
    • 2005
  • A dynamical analysis and PID control of a compressed gas expulsion system is performed. The purpose of this study is to develop a compressed gas discharging system and to verify the validity of the system. The electro-hydraulic servo valve is modeled as a 3th order transfer function to calculate flow force affecting expulsion valve is significantly considered. The friction force in the expulsion valve is considered as a nonliner model of stribeck effect. The dynamic characteristics of this system is examined by the computer simulation. The position control of the expulsion valve is performed by PID controller.

  • PDF