• Title/Summary/Keyword: Electro activity

Search Result 155, Processing Time 0.023 seconds

Linear/Non-Linear Tools and Their Applications to Sleep EEG : Spectral, Detrended Fluctuation, and Synchrony Analyses (컴퓨터를 이용한 수면 뇌파 분석 : 스펙트럼, 비경향 변동, 동기화 분석 예시)

  • Kim, Jong-Won
    • Sleep Medicine and Psychophysiology
    • /
    • v.15 no.1
    • /
    • pp.5-11
    • /
    • 2008
  • Sleep is an essential process maintaining the life cycle of the human. In parallel with physiological, cognitive, subjective, and behavioral changes that take place during the sleep, there are remarkable changes in the electroencephalogram (EEG) that reflect the underlying electro-physiological activity of the brain. However, analyzing EEG and relating the results to clinical observations is often very hard due to the complexity and a huge data amount. In this article, I introduce several linear and non-linear tools, developed to analyze a huge time series data in many scientific researches, and apply them to EEG to characterize various sleep states. In particular, the spectral analysis, detrended fluctuation analysis (DFA), and synchrony analysis are administered to EEG recorded during nocturnal polysomnography (NPSG) processes and daytime multiple sleep latency tests (MSLT). I report that 1) sleep stages could be differentiated by the spectral analysis and the DFA ; 2) the gradual transition from Wake to Sleep during the sleep onset could be illustrated by the spectral analysis and the DFA ; 3) electrophysiological properties of narcolepsy could be characterized by the DFA ; 4) hypnic jerks (sleep starts) could be quantified by the synchrony analysis.

  • PDF

Structural Design and Characterization of a Channel-forming Peptide

  • Krittanai, Chartchai;Panyim, Sakol
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.460-465
    • /
    • 2004
  • A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions.

Electro-Catalytic Oxidation of Amoxicillin by Carbon Ceramic Electrode Modified with Copper Iodide

  • Karim-Nezhad, Ghasem;Pashazadeh, Ali;Pashazadeh, Sara
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.322-328
    • /
    • 2013
  • Copper iodide was employed as a modifier for preparation of a new carbon ceramic electrode. For the first time, the catalytic oxidation of amoxicillin (AMX) was demonstrated by cyclic voltammetry, chronoamperometry and amperometry methods at the surface of this modified carbon ceramic electrode. The copper iodide modified sol-gel derived carbon ceramic (CIM-SGD-CC) electrode has very high catalytic ability for electrooxidation of amoxicillin. The catalytic oxidation peak current was linearly dependent on the amoxicillin concentration and the linearity range obtained was 100 to 1000 ${\mu}mol\;L^{-1}$ with a detection limit of 0.53 ${\mu}mol\;L^{-1}$. The diffusion coefficient ($D=(1.67{\pm}0.102){\times}10^{-3}\;cm^2\;s^{-1}$), and the kinetic parameter such as the electron transfer coefficient (${\alpha}$) and exchange current density ($j_0$) for the modified electrode were calculated. The advantages of the modified CCE are its good stability and reproducibility of surface renewal by simple polishing, excellent catalytic activity and simplicity of preparation.

Molecular Behavior and Electro-Chemical Properties of Dendrimer and Staff-type Polymer Monolayers in Crown Function Group (크라운 기능기를 포함한 덴드리머 및 Staff-type 고분자 단분자막의 분자거동 및 전기ㆍ화학적 특성)

  • 장정수
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.213-213
    • /
    • 2003
  • We investigated the monolayer behavior at the air-water interface with metal solution, the surface morphologies and the electrical properties such as conductivity, The calculated conductivity values of pure water subphase and its complexes with L $i^{+}$ ions are 5.6$\times$10$^{-l6}$ and 1.9$\times$10$^{-14}$ [S/cm], respectively. And the calculated barrier height D values of pure water subphase and its complexes with Li. ions are 0.70 and 0.66 [eV], respectively. We also attempted to fabricate a crown dendrimer Langmuir-Blodgett (LB) films containing functional end group that could form a complex structure with metal ions. Also, we investigated the surface activity of dendrimer films at air-water interface. In AFM images. the larger domains irregularly shaped structures on the top while the smaller ones were free from such defects. In conclusion, it is demonstrated that the metal ion around dendrimer and polymer included crown function group can contribute to make formation of network structure among crown function group and result in change of electrical properties.s.s.

Molecular Behavior and Electro-Chemical Properties of Dendrimer and Staff-type Polymer Monolayers in Crown Function Group (크라운 기능기를 포함한 덴드리머 및 Staff-type 고분자 단분자막의 분자거동 및 전기ㆍ화학적 특성)

  • 장정수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.5
    • /
    • pp.213-218
    • /
    • 2003
  • We investigated the monolayer behavior at the air-water interface with metal solution, the surface morphologies and the electrical properties such as conductivity, The calculated conductivity values of pure water subphase and its complexes with L $i^{+}$ ions are 5.6$\times$10$^{-l6}$ and 1.9$\times$10$^{-14}$ [S/cm], respectively. And the calculated barrier height D values of pure water subphase and its complexes with Li. ions are 0.70 and 0.66 [eV], respectively. We also attempted to fabricate a crown dendrimer Langmuir-Blodgett (LB) films containing functional end group that could form a complex structure with metal ions. Also, we investigated the surface activity of dendrimer films at air-water interface. In AFM images. the larger domains irregularly shaped structures on the top while the smaller ones were free from such defects. In conclusion, it is demonstrated that the metal ion around dendrimer and polymer included crown function group can contribute to make formation of network structure among crown function group and result in change of electrical properties.s.s.

Surface Hydrolysis of Fibrous Poly(${\epsilon}$-caprolactone) Scaffolds for Enhanced Osteoblast Adhesion and Proliferation

  • Park, Jeong-Soo;Kim, Jung-Man;Lee, Sung-Jun;Lee, Se-Geun;Jeong, Young-Keun;Kim, Sung-Eun;Lee, Sang-Cheon
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.424-429
    • /
    • 2007
  • A procedure for the surface hydrolysis of an electrospun poly(${\epsilon}$-caprolactone) (PCL) fibrous scaffold was developed to enhance the adhesion and proliferation of osteoblasts. The surface hydrolysis of fibrous scaffolds was performed using NaOH treatment for the formation of carboxyl groups on the fiber surfaces. The hydrolysis process did not induce deformation of the fibers, and the fibers retained their diameter. The cell seeding density on the NaOH-treated PCL fibrous scaffolds was more pronounced than on the non-treated PCL fibers used as a control. The alkaline phosphatase activity, osteocalcin and a mineralization assay strongly supported that the surface-hydrolyzed PCL fibrous scaffolds provided more favorable environments for the proliferation and functions of osteoblasts compared to the non-treated PCL fibrous scaffolds use as a control.

Effects of Electromagnetic Radiation Exposure on Stress-Related Behaviors and Stress Hormones in Male Wistar Rats

  • Mahdavi, Seyed Mohammad;Sahraei, Hedayat;Yaghmaei, Parichehreh;Tavakoli, Hassan
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.570-576
    • /
    • 2014
  • Studies have demonstrated that electromagnetic waves, as the one of the most important physical factors, may alter cognitive and non-cognitive behaviors, depending on the frequency and energy. Moreover, non-ionizing radiation of low energy waves e.g. very low frequency waves could alter this phenomenon via alterations in neurotransmitters and neurohormones. In this study, short, medium, and long-term exposure to the extremely low frequency electromagnetic field (ELF-EMF) (1 and 5 Hz radiation) on behavioral, hormonal, and metabolic changes in male Wistar rats (250 g) were studied. In addition, changes in plasma concentrations for two main stress hormones, noradrenaline and adrenocorticotropic hormone (ACTH) were evaluated. ELF-EMF exposure did not alter body weight, and food and water intake. Plasma glucose level was increased and decreased in the groups which exposed to the 5 and 1Hz wave, respectively. Plasma ACTH concentration increased in both using frequencies, whereas noradrenaline concentration showed overall reduction. At last, numbers of rearing, sniffing, locomotor activity was increased in group receiving 5 Hz wave over the time. In conclusions, these data showed that the effects of 1 and 5 Hz on the hormonal, metabolic and stress-like behaviors may be different. Moreover, the influence of waves on stress system is depending on time of exposure.

Rapid Identification of Radical Scavenging Compounds in Blueberry Extract by HPLC Coupled to an On-line ABTS Based Assay and HPLC-ESI/MS

  • Kim, Chul-Young;Lee, Hee-Ju;Lee, Eun-Ha;Jung, Sang-Hoon;Lee, Dong-Un;Kang, Suk-Woo;Hong, Sae-Jin;Um, Byung-Hun
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.846-849
    • /
    • 2008
  • This study employed high performance liquid chromatography (HPLC) coupled to an on-line $ABTS^+$ radical scavenging detection (RSD) system along with HPLC-electro spin impact/mass spectrometry (ESI/MS), to rapidly determine and identify antioxidant compounds occurring in blueberry extract. The extract was separated by HPLC, and then the radical scavenging activities of the separated compounds were evaluated by the on-line coupled $ABTS^+$-RSD system. The negative peaks of the $ABTS^+$-RSD system, which indicates the presence of antioxidant activity, were monitored by measuring the decrease in absorbance at 734 nm. The active components in the blueberry extract were identified by HPLC-ESI/MS using their MS spectra and retention times. According to the data acquired from the on-line HPLC-$ABTS^+$-based assay and HPLC-ESI/MS systems, the antioxidant compounds detected in the blueberry extract were identified as chlorogenic acid and 11 anthocyanins.

Research Activity on Rocket-Ramjet Combined-cycle Engine in JAXA

  • Takegoshi, Masao;Kanda, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.460-468
    • /
    • 2008
  • Recent activities on the scramjet and rocket-ramjet combined-cycle engine of Japan Aerospace Exploration Agency(JAXA) are herein presented. The scramjet engines and combined-cycle engines have been studied in the world and JAXA has also studied such the engines experimentally, numerically and conceptually. Based on the studies, 2 to 3 m long, hydrogen-fueled engine models were designed and tested at the Ramjet Engine Test Facility(RJTF) and the High Enthalpy Shock Tunnel(HIEST). A scramjet engine model was tested in Mach 10 to 14 flight condition at HIEST. A 3 m long scramjet engine model was designed to reduce a dissociation energy loss in a high temperature condition. Drag reduction by a tangential injection and two ways of a transverse fuel injection were examined. Combustor model tests at three operating modes of the combined-cycle engine were conducted, demonstrating the combustor operation and producing data for the engine design at each mode. Aerodynamic engine model tests were conducted in a transonic wind tunnel, demonstrating the engine operation in the ejector-jet mode. A 3 m long combined-cycle engine model has been tested in the ejector-jet mode and the ramjet mode since March 2007. Carbon composite material was examined for application to the engines. Production of the cooling channel on a nickel alloy plate succeeded by the electro-chemical etching.

  • PDF

Systematic test on the effectiveness of MEMS nano-sensing technology in monitoring heart rate of Wushu exercise

  • Shuo Guan
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • Exercise is beneficial to the body in some ways. It is vital for people who have heart problems to perform exercise according to their condition. This paper describes how an Android platform can provide early warnings of fatigue during wushu exercise using Photoplethysmography (PPG) signals. Using the data from a micro-electro-mechanical system (MEMS) gyroscope to detect heart rate, this study contributes an algorithm to determine a user's fatigue during wushu exercise. It sends vibration messages to the user's smartphone device when the heart rate exceeds the limit or is too fast during exercise. The heart rate monitoring system in the app records heart rate data in real-time while exercising. A simple pulse sensor and Android app can be used to monitor heart rate. This plug-in sensor measures heart rate based on photoplethysmography (PPG) signals during exercise. Pulse sensors can be easily inserted into the fingertip of the user. An embedded microcontroller detects the heart rate by connecting a pulse sensor transmitted via Bluetooth to the smartphone. In order to measure the impact of physical activity on heart rate, Wushu System tests are conducted using various factors, such as age, exercise speed, and duration. During testing, the Android app was found to detect heart rate with an accuracy of 95.3% and to warn the user when their heart rate rises to an abnormal level.