• Title/Summary/Keyword: Electricity

Search Result 4,278, Processing Time 0.03 seconds

Dynamic Effects of Capacity Mechanisms of Electricity Market on the Market Performances (전력시장의 용량 메커니즘이 전력시장 성과에 미치는 동태적 효과)

  • Jang, Dae-Chul;Park, Kyung-Bae
    • Korean System Dynamics Review
    • /
    • v.12 no.4
    • /
    • pp.93-124
    • /
    • 2011
  • The introduction of competition in the generation of electricity has raised the fundamental question of whether markets provide the right incentives for the provision of the capacity needed to maintain system reliability. Capacity mechanisms are adopted around the world to guarantee appropriate level of investment in electricity generation capacity. In this study, we discuss these approaches and analyze the capacity pricing mechanisms from the adequacy perspective. We conclude that the design of capacity mechanism is very important to decrease electricity spot price and increase total electric capacity. Specifically, the constant of capacity pricing mechanism made a difference to the performance of electricity market. However, the slope of capacity price mechanism is better than the constant of that in improving performance of electricity market.

  • PDF

Electricity Market Design for the Incorporation of Various Demand-Side Resources in the Jeju Smart Grid Test-bed

  • Park, Man-Guen;Cho, Seong-Bin;Chung, Koo-Hyung;Moon, Kyeong-Seob;Roh, Jae-Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1851-1863
    • /
    • 2014
  • Many countries are increasing their investments in smart grid technology to enhance energy efficiency, address climate change, and trigger a green energy revolution. In addition to these goals, Korea also seeks to promote national competitiveness, prepare for the growth of the renewable energy industry, and export industrialization through its strategic promotion of the smart grid. Given its inherent representativeness for Korean implementation of the smart grid and its growth potential, Jeju Island was selected by the Korean government as the site for smart grid testing in June 2009. This paper presents a new design for the electricity market and an operational scheme for testing Smart Electricity Services in the Jeju smart grid demonstration project. The Jeju smart grid test-bed electricity market is constructed on the basis of day-ahead and real-time markets to provide two-way electricity transaction environments. The experience of the test-bed market operation shows that the competitive electricity market can facilitate the smart grid deployment in Korea by allowing various demand side resources to be active market players.

Development of an Integrated Power Market Simulator for the Korean Electricity Market

  • Hur Jin;Kang Dong-Joo;Moon Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.416-424
    • /
    • 2005
  • At present, the Korean electricity industry is undergoing restructuring and the Cost Based-generation Pool (CBP) market is being operated in preparation of a Two Way Bidding Pool (TWBP) market. In deregulated electricity industries, an integrated power market simulator is one of the tools that can be used by market participants and market operators analyzing market behaviors and studying market structures and market codes. In this regard, it is very important to develop an electricity market simulator that reflects market code providing a market operation mechanism. This paper presents the development of an integrated market simulator, called the Power Exchange Simulator (PEXSIM), which is designed to imitate the Korean electricity market considering the various features of the market operating mechanism such as uniform price and constrained on/off payment. The PEXSIM is developed in VB.NET and composed of five modules whose titles are M-SIM, P-SIM, O-SIM, T-SIM and G-SIM interfacing the Access database program. To verify the features and the performance of the PEXSIM, a small Two Way bidding market with a 12-bus system and a One Way bidding market for generator competition will be presented for the electricity market simulations using PEXSIM.

Implementation of Electricity Power Management System for Industries based on USN (USN 기반의 산업용 전력관리시스템 구현)

  • Kim, Min-Ho;Lee, Nam-Gil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.103-109
    • /
    • 2012
  • In this paper, We suggest electricity power management system which makes a good efficient and minimize wasteness of electricity power. We made electricity power management system based USN(Ubiquitous Sensor Network) for industries, factories, public offices and so on, with optimized system. Simply, we can measure and control electricity power as we plug it outlets. This system can monitor and control electricity power, organizing network of PLC(Power Line Communication) and TCP/IP with the sensor for electricity power. Through the acquisition data, this proposed system can manage and save the electricity power efficiently and also we can connect this system to server, anytime, anywhere with Android phone.

A Multiple Variable Regression-based Approaches to Long-term Electricity Demand Forecasting

  • Ngoc, Lan Dong Thi;Van, Khai Phan;Trang, Ngo-Thi-Thu;Choi, Gyoo Seok;Nguyen, Ha-Nam
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.59-65
    • /
    • 2021
  • Electricity contributes to the development of the economy. Therefore, forecasting electricity demand plays an important role in the development of the electricity industry in particular and the economy in general. This study aims to provide a precise model for long-term electricity demand forecast in the residential sector by using three independent variables include: Population, Electricity price, Average annual income per capita; and the dependent variable is yearly electricity consumption. Based on the support of Multiple variable regression, the proposed method established a model with variables that relate to the forecast by ignoring variables that do not affect lead to forecasting errors. The proposed forecasting model was validated using historical data from Vietnam in the period 2013 and 2020. To illustrate the application of the proposed methodology, we presents a five-year demand forecast for the residential sector in Vietnam. When demand forecasts are performed using the predicted variables, the R square value measures model fit is up to 99.6% and overall accuracy (MAPE) of around 0.92% is obtained over the period 2018-2020. The proposed model indicates the population's impact on total national electricity demand.

Decomposition Analysis of CO2 Emissions of the Electricity Generation Sector in Korea using a Logarithmic Mean Divisia Index Method (전력산업의 온실가스 배출요인 분석 및 감축 방안 연구)

  • Cho, Yongsung
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.357-367
    • /
    • 2017
  • Electricity generation in Korea mainly depends on thermal power and nuclear power. Especially the coal power has led to the increase in $CO_2$ emissions. This paper intends to analyze the current status of $CO_2$ emissions from electricity generation in Korea during the period 1990~2016, and apply the logarithmic mean Divisia index (LMDI) technique to find the nature of the factors influencing the changes in $CO_2$ emissions. The main results as follows: first, $CO_2$ emission from electricity generation has increased by $165.9MtCO_2$ during the period of analysis. Coal products is the main fuel type for thermal power generation, which accounts about 73% $CO_2$ emissions from electricity generation. Secondly, the increase of real GDP is the most important contributor to increase $CO_2$ emissions from electricity generation. The carbon intensity and the electricity intensity also affected the increase in $CO_2$ emission, but the energy intensity effect and the dependency of thermal power effect play the dominant role in decreasing $CO_2$ emissions.

Empirical Research of Energy Saving based on Measurement of The Consumed Power of University's Electric Vending Machine (친환경자동판매기의 국내 대학교 에너지 소비 개선 효과 - 수도권 대학을 중심으로 -)

  • Kim, Joeng-Hoon;Kim, Jeong-In
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.95-101
    • /
    • 2016
  • This study measured the amount of electricity consumed by the vending machines installed on campus and aim to come up with measures to address excessive consumption of electricity. We chose 10 universities located in the city of Seoul and Gyeonggi province and measured electricity consumption of 10 vending machines installed in each university. We then calculated annual electricity consumption of the machines based on previously calculated electricity consumption of 100 samples. According to the result of the calculation, it is estimated that the machines studied on consume 700 KWh a year. This amount could translate into approximately 3,000 tons of annual carbon emissions and 640 million KRW in annual electricity bills. It was also found that there is a significant difference between ordinary vending machines and machines certified for being eco-friendly and energy efficient, in terms of electric power consumption. It is expected that, if the ordinary machines are replaced with the eco-friendly and high-efficient machines, 640 KWh of electricity, 300 kg of carbon, and 61,640 KRW in electricity bills would be saved, which means 28% saving in energy, emissions and bills. In conclusion, we determined that, as one of the ways to reduce electric power consumption and carbon emissions, old vending machines on campus could be replaced with eco-friendly and high-efficient machines.

A Study on the Spatial Units Adequacy for the Regional Pricing of Electricity: Based on Electricity Self-sufficiency Rates by Si·Gun·Gu (지역별 차등 전기요금제 적용을 위한 공간 단위 검토: 시·군·구별 전력 자급률을 기준으로)

  • Chung Sup Lee;Kang-Won Lee
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.96-109
    • /
    • 2023
  • Recently, there has been a lot of discussion about the regional pricing of electricity and electricity self-sufficiency. In Korea, power generation facilities are highly ubiquitous and there is an imbalance between electricity production and consumption regions. So it is proposed to charge different price by region, instead of the current nationwide uniform price, and the regional electricity self-sufficiency rate is proposed as a criterion for identifying electricity production and consumption regions. However, many discussions set the spatial unit for measuring electricity self-sufficiency by 17 Si·Do, which needs to be analyzed for its appropriateness. In this study, we analyzed the electricity self-sufficiency rate using 17 provinces and 229 Si·Gun·Gu as the spatial unit. As a result of the analysis, there are 7 and 10 electricity producing and consuming regions at Si·Do level, but 38 and 191 at Si·Gun·Gu level. In addition, although the electricity self-sufficiency rate measurement has the advantage of identifying electricity production and consumption areas in a simple and intuitive way, we points out that it has some problems with the criteria for regional pricing of electricity.

Collection and Analysis of Electricity Consumption Data in POSTECH Campus (포스텍 캠퍼스의 전력 사용 데이터 수집 및 분석)

  • Ryu, Do-Hyeon;Kim, Kwang-Jae;Ko, YoungMyoung;Kim, Young-Jin;Song, Minseok
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.617-634
    • /
    • 2022
  • Purpose: This paper introduces Pohang University of Science Technology (POSTECH) advanced metering infrastructure (AMI) and Open Innovation Big Data Center (OIBC) platform and analysis results of electricity consumption data collected via the AMI in POSTECH campus. Methods: We installed 248 sensors in seven buildings at POSTECH for the AMI and collected electricity consumption data from the buildings. To identify the amounts and trends of electricity consumption of the seven buildings, electricity consumption data collected from March to June 2019 were analyzed. In addition, this study compared the differences between the amounts and trends of electricity consumption of the seven buildings before and after the COVID-19 outbreak by using electricity consumption data collected from March to June 2019 and 2020. Results: Users can monitor, visualize, and download electricity consumption data collected via the AMI on the OIBC platform. The analysis results show that the seven buildings consume different amounts of electricity and have different consumption trends. In addition, the amounts of most buildings were significantly reduced after the COVID-19 outbreak. Conclusion: POSTECH AMI and OIBC platform can be a good reference for other universities that prepare their own microgrid. The analysis results provides a proof that POSTECH needs to establish customized strategies on reducing electricity for each building. Such results would be useful for energy-efficient operation and preparation of unusual energy consumptions due to unexpected situations like the COVID-19 pandemic.

Assessing Possible Tax Plans on Nuclear Electricity Generation in Korea (원자력 발전에 대한 과세방안 연구)

  • Sunghoon Hong
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.711-731
    • /
    • 2022
  • In Korea, nuclear power plants are major sources of electricity supply with relatively low costs. Despite the importance and scale of nuclear electricity generation, the Korean tax and levy system is less organized than those in other countries, such as France and Japan, where nuclear power plants also play significant roles for electricity supply. Countries impose tax on nuclear electricity generation roughly in three ways: tax on nuclear reactors; tax on uranium fuel; tax on electricity from nuclear power plants. The Korean government may consider taxing nuclear electricity generation based on uranium fuel or electricity generation. If taxing on uranium fuel at the rate of 90 KRW per milligram of uranium, the Korean government can collect additional tax revenue of 430 billion KRW. If taxing on electricity from nuclear power plants at the rate of 11 KRW per kilowatt-hour, the government can collect additional tax revenue of 1,600 billion KRW.