• Title/Summary/Keyword: Electrical-electronics Engineering

Search Result 11,578, Processing Time 0.044 seconds

Development of Deep Learning Structure to Improve Quality of Polygonal Containers (다각형 용기의 품질 향상을 위한 딥러닝 구조 개발)

  • Yoon, Suk-Moon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.493-500
    • /
    • 2021
  • In this paper, we propose the development of deep learning structure to improve quality of polygonal containers. The deep learning structure consists of a convolution layer, a bottleneck layer, a fully connect layer, and a softmax layer. The convolution layer is a layer that obtains a feature image by performing a convolution 3x3 operation on the input image or the feature image of the previous layer with several feature filters. The bottleneck layer selects only the optimal features among the features on the feature image extracted through the convolution layer, reduces the channel to a convolution 1x1 ReLU, and performs a convolution 3x3 ReLU. The global average pooling operation performed after going through the bottleneck layer reduces the size of the feature image by selecting only the optimal features among the features of the feature image extracted through the convolution layer. The fully connect layer outputs the output data through 6 fully connect layers. The softmax layer multiplies and multiplies the value between the value of the input layer node and the target node to be calculated, and converts it into a value between 0 and 1 through an activation function. After the learning is completed, the recognition process classifies non-circular glass bottles by performing image acquisition using a camera, measuring position detection, and non-circular glass bottle classification using deep learning as in the learning process. In order to evaluate the performance of the deep learning structure to improve quality of polygonal containers, as a result of an experiment at an authorized testing institute, it was calculated to be at the same level as the world's highest level with 99% good/defective discrimination accuracy. Inspection time averaged 1.7 seconds, which was calculated within the operating time standards of production processes using non-circular machine vision systems. Therefore, the effectiveness of the performance of the deep learning structure to improve quality of polygonal containers proposed in this paper was proven.

Development of Digital Transceiver Unit for 5G Optical Repeater (5G 광중계기 구동을 위한 디지털 송수신 유닛 설계)

  • Min, Kyoung-Ok;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.156-167
    • /
    • 2021
  • In this paper, we propose a digital transceiver unit design for in-building of 5G optical repeaters that extends the coverage of 5G mobile communication network services and connects to a stable wireless network in a building. The digital transceiver unit for driving the proposed 5G optical repeater is composed of 4 blocks: a signal processing unit, an RF transceiver unit, an optical input/output unit, and a clock generation unit. The signal processing unit plays an important role, such as a combination of a basic operation of the CPRI interface, a 4-channel antenna signal, and response to external control commands. It also transmits and receives high-quality IQ data through the JESD204B interface. CFR and DPD blocks operate to protect the power amplifier. The RF transmitter/receiver converts the RF signal received from the antenna to AD, is transmitted to the signal processing unit through the JESD204B interface, and DA converts the digital signal transmitted from the signal processing unit to the JESD204B interface and transmits the RF signal to the antenna. The optical input/output unit converts an electric signal into an optical signal and transmits it, and converts the optical signal into an electric signal and receives it. The clock generator suppresses jitter of the synchronous clock supplied from the CPRI interface of the optical input/output unit, and supplies a stable synchronous clock to the signal processing unit and the RF transceiver. Before CPRI connection, a local clock is supplied to operate in a CPRI connection ready state. XCZU9CG-2FFVC900I of Xilinx's MPSoC series was used to evaluate the accuracy of the digital transceiver unit for driving the 5G optical repeater proposed in this paper, and Vivado 2018.3 was used as the design tool. The 5G optical repeater digital transceiver unit proposed in this paper converts the 5G RF signal input to the ADC into digital and transmits it to the JIG through CPRI and outputs the downlink data signal received from the JIG through the CPRI to the DAC. And evaluated the performance. The experimental results showed that flatness, Return Loss, Channel Power, ACLR, EVM, Frequency Error, etc. exceeded the target set value.

3D Point Cloud Reconstruction Technique from 2D Image Using Efficient Feature Map Extraction Network (효율적인 feature map 추출 네트워크를 이용한 2D 이미지에서의 3D 포인트 클라우드 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.408-415
    • /
    • 2022
  • In this paper, we propose a 3D point cloud reconstruction technique from 2D images using efficient feature map extraction network. The originality of the method proposed in this paper is as follows. First, we use a new feature map extraction network that is about 27% efficient than existing techniques in terms of memory. The proposed network does not reduce the size to the middle of the deep learning network, so important information required for 3D point cloud reconstruction is not lost. We solved the memory increase problem caused by the non-reduced image size by reducing the number of channels and by efficiently configuring the deep learning network to be shallow. Second, by preserving the high-resolution features of the 2D image, the accuracy can be further improved than that of the conventional technique. The feature map extracted from the non-reduced image contains more detailed information than the existing method, which can further improve the reconstruction accuracy of the 3D point cloud. Third, we use a divergence loss that does not require shooting information. The fact that not only the 2D image but also the shooting angle is required for learning, the dataset must contain detailed information and it is a disadvantage that makes it difficult to construct the dataset. In this paper, the accuracy of the reconstruction of the 3D point cloud can be increased by increasing the diversity of information through randomness without additional shooting information. In order to objectively evaluate the performance of the proposed method, using the ShapeNet dataset and using the same method as in the comparative papers, the CD value of the method proposed in this paper is 5.87, the EMD value is 5.81, and the FLOPs value is 2.9G. It was calculated. On the other hand, the lower the CD and EMD values, the better the accuracy of the reconstructed 3D point cloud approaches the original. In addition, the lower the number of FLOPs, the less memory is required for the deep learning network. Therefore, the CD, EMD, and FLOPs performance evaluation results of the proposed method showed about 27% improvement in memory and 6.3% in terms of accuracy compared to the methods in other papers, demonstrating objective performance.

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

Development of control system for complex microbial incubator (복합 미생물 배양기의 제어시스템 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.122-126
    • /
    • 2023
  • In this paper, a control system for a complex microbial incubator was proposed. The proposed control system consists of a control unit, a communication unit, a power supply unit, and a control system of the complex microbial incubator. The controller of the complex microbial incubator is designed and manufactured to convert analog signals and digital signals, and control signals of sensors such as displays using LCD panels, water level sensors, temperature sensors, and pH concentration sensors. The water level sensor used is designed and manufactured to enable accurate water level measurement by using the IR laser method with excellent linearity in order to solve the problem that existing water level sensors are difficult to measure due to foreign substances such as bubbles. The temperature sensor is designed and used so that it has high accuracy and no cumulative resistance error by measuring using the thermal resistance principle. The communication unit consists of two LAN ports and one RS-232 port, and is designed and manufactured to transmit signals such as LCD panel, PCT panel, and load cell controller used in the complex microbial incubator to the control unit. The power supply unit is designed and manufactured to supply power by configuring it with three voltage supply terminals such as 24V, 12V and 5V so that the control unit and communication unit can operate smoothly. The control system of the complex microbial incubator uses PLC to control sensor values such as pH concentration sensor, temperature sensor, and water level sensor, and the operation of circulation pump, circulation valve, rotary pump, and inverter load cell used for cultivation. In order to evaluate the performance of the control system of the proposed complex microbial incubator, the result of the experiment conducted by the accredited certification body showed that the range of water level measurement sensitivity was -0.41mm~1.59mm, and the range of change in water temperature was ±0.41℃, which is currently commercially available. It was confirmed that the product operates with better performance than the performance of the products. Therefore, the effectiveness of the control system of the complex microbial incubator proposed in this paper was demonstrated.

A study on age distortion reduction in facial expression image generation using StyleGAN Encoder (StyleGAN Encoder를 활용한 표정 이미지 생성에서의 연령 왜곡 감소에 대한 연구)

  • Hee-Yeol Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.464-471
    • /
    • 2023
  • In this paper, we propose a method to reduce age distortion in facial expression image generation using StyleGAN Encoder. The facial expression image generation process first creates a face image using StyleGAN Encoder, and changes the expression by applying the learned boundary to the latent vector using SVM. However, when learning the boundary of a smiling expression, age distortion occurs due to changes in facial expression. The smile boundary created in SVM learning for smiling expressions includes wrinkles caused by changes in facial expressions as learning elements, and it is determined that age characteristics were also learned. To solve this problem, the proposed method calculates the correlation coefficient between the smile boundary and the age boundary and uses this to introduce a method of adjusting the age boundary at the smile boundary in proportion to the correlation coefficient. To confirm the effectiveness of the proposed method, the results of an experiment using the FFHQ dataset, a publicly available standard face dataset, and measuring the FID score are as follows. In the smile image, compared to the existing method, the FID score of the smile image generated by the ground truth and the proposed method was improved by about 0.46. In addition, compared to the existing method in the smile image, the FID score of the image generated by StyleGAN Encoder and the smile image generated by the proposed method improved by about 1.031. In non-smile images, compared to the existing method, the FID score of the non-smile image generated by the ground truth and the method proposed in this paper was improved by about 2.25. In addition, compared to the existing method in non-smile images, it was confirmed that the FID score of the image generated by StyleGAN Encoder and the non-smile image generated by the proposed method improved by about 1.908. Meanwhile, as a result of estimating the age of each generated facial expression image and measuring the estimated age and MSE of the image generated with StyleGAN Encoder, compared to the existing method, the proposed method has an average age of about 1.5 in smile images and about 1.63 in non-smile images. Performance was improved, proving the effectiveness of the proposed method.

A Study on the Adolescent's Recognition of Science and Technology, Environment, Climate Change in Korea (우리나라 청소년의 과학기술과 환경, 기후변화 관련 인식 연구)

  • Seo, Keum-Young;Kim, Woo Hyun;Kim, Hyun-Ah;Lee, Jae-Hyung
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.409-416
    • /
    • 2013
  • Recently, the property damage has been increasing due to climate change in South Korea. While the general public has become more aware of the environmental issues, but the environmental education system has not been able to meet up with the demands of the public. The purpose of this study is to suggest preliminary data which is needed for developing a environmental textbook. A survey was conducted to meet the following requirements. Respondent's level of interest in problems or situations concerning the following eight themes: fundamental science, health and medicine, aerospace engineering, life science, electrical electronics, telecommunication, mineral and energy resources, environment. The data was collected from 139 students in Seoul and Gyeonggi province. The results showed that health and medicine issues interest students the most (49.6%), followed by environment (46.8%). We asked the respondents who were very interested in each question for their reasons, and they answered that environmental issue is related to the improvement of their life quality (53.8%) than their curiosity (38.5%). Students were very interested in the other issues because of just curiosity. Most students (90.6%) said seasonal change was not same each year. 18.0% of respondents replied that they and their friends had experienced climate change. The majority of students (94.2%) thought that they will experience natural disaster blamed on climate change during their life. In other words, climate change is already the day-to-day events of their lives. The majority of their opinions, more then three than ten students(30.9%) said the South Korean government should conduct an energy saving campaign to climate change problems followed by expanding new renewable energy (24.5%), conducting adaptation policies of climate change(22.3 %), introducing of a system as like $CO_2$ emissions trading(20.9%) and so on. There are more Stu- dents (69.1%) who know of new renewable energy than students who don't know it; however, respondents who know the meaning very well were just 18.7% showing that most students dimly know the meaning of new renewable energy.

Study on Bandwidth and Characteristic Impedance of CWP3DCS (Coplanar Waveguide Employing Periodic 3D Coupling Structures) for the Development of a Radio Communication FISoC (Fully-integrated System on Chip) Semiconductor Device (완전집적형 무선통신 SoC 반도체 소자 개발을 위한 주기적인 3차원 결합구조를 가지는 코프레너 선로에 대한 대역폭 및 임피던스 특성연구)

  • Yun, Young
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.179-190
    • /
    • 2022
  • In this study, we investigated the characteristic impedance and bandwidth of CPW3DCS (coplanar waveguide employing periodic 3D coupling structures), and examined its potential for the development of a marine radio communication FISoC (fully-integrated system on chip) semiconductor device. To extract bandwidth and characteristic impedance of the CPW3DC, we induced a measurement-based equation reflecting measured insertion loss, and compared the measured results of the propagation constant β and characteristic impedance with the measured ones. According to the results of the comparison, the calculated results show a good agreement with the measured ones. Concretely, the propagation constant β and characteristic impedance exhibited an maximum error of 3.9% and 6.4%, respectively. According to the results of this study, in a range of LT = 30 ~ 150 ㎛ for the length of periodic structures, the CPW3DC exhibited a passband characteristic of 121 GHz, and a very small dependency of characteristic impedance on frequency. We could realize a low impedance transmission line with a characteristic impedance lower than 20 Ω by using CPW3DCS with a line width of 20 ㎛, which was highly reduced, compared with a 3mm line width of conventional transmission line with the same impedance. The characteristic impedance was easily adjusted by changing LT. The above results indicate that the CPW3DC can be usefully used for the development of a wireless communication FISoC (fully-integrated system on chip) semiconductor device. This is the first report of a study on the bandwidth of the CPW3DC.