• Title/Summary/Keyword: Electrical system Rig

Search Result 19, Processing Time 0.02 seconds

Three-Phase Reference Current Generator Employing with Kalman Filter for Shunt Active Power Filter

  • Hasim, Ahmad Shukri Abu;Ibrahim, Zulkifilie;Talib, Md. Hairul Nizam;Dardin, Syed Mohd. Fairuz Syed Mohd.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.151-160
    • /
    • 2017
  • This paper presents a new technique of reference current generator based on Kalman filter (KF) estimator for three-phase shunt active power filter (APF). The stationary reference frame (d-q algorithm) is used to transform the load currents into DC component. The harmonics of load currents are extracted and the three-phase reference currents are generated using KF estimator. The work is simulated using Matlab/Simulink platform. To validate the simulation results, an experimental test-rig have been perform using real-time control dSPACE DS1104. In addition, hysteresis current control was used to generate the switching signal for the correction of the harmonics in the system. The non-linear load were constructed with three-phase rectifier which connected in series with inductor and parallel with resistor and capacitor. The results shows that the new technique of shunt APF embedded with KF is proven to eliminate the harmonics created by the non-linear load with some improvement on the total harmonics distortion (THD).

The Optimal Controller Design of Buck-Boost Converter by using Adaptive Tabu Search Algorithm Based on State-Space Averaging Model

  • Pakdeeto, Jakkrit;Chanpittayagit, Rangsan;Areerak, Kongpan;Areerak, Kongpol
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1146-1155
    • /
    • 2017
  • Normally, the artificial intelligence algorithms are widely applied to the optimal controller design. Then, it is expected that the best output performance is achieved. Unfortunately, when resulting controller parameters are implemented by using the practical devices, the output performance cannot be the best as expected. Therefore, the paper presents the optimal controller design using the combination between the state-space averaging model and the adaptive Tabu search algorithm with the new criteria as two penalty conditions to handle the mentioned problem. The buck-boost converter regulated by the cascade PI controllers is used as the example power system. The results show that the output performance is better than those from the conventional design method for both input and load variations. Moreover, it is confirmed that the reported controllers can be implemented using the realistic devices without the limitation and the stable operation is also guaranteed. The results are also validated by the simulation using the topology model of MATLAB and also experimentally verified by the testing rig.

A Four Leg Shunt Active Power Filter Predictive Fuzzy Logic Controller for Low-Voltage Unbalanced-Load Distribution Networks

  • Fahmy, A.M.;Abdelslam, Ahmed K.;Lotfy, Ahmed A.;Hamad, Mostafa;Kotb, Abdelsamee
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.573-587
    • /
    • 2018
  • Recently evolved power electronics' based domestic/residential appliances have begun to behave as single phase non-linear loads. Performing as voltage/current harmonic sources, those loads when connected to a three phase distribution network contaminate the line current with harmonics in addition to creating a neutral wire current increase. In this paper, an enhanced performance three phase four leg shunt active power filter (SAPF) controller is presented as a solution for this problem. The presented control strategy incorporates a hybrid predictive fuzzy-logic based technique. The predictive part is responsible for the SAPF compensating current generation while the DC-link voltage control is performed by a fuzzy logic technique. Simulations at various loading conditions are carried out to validate the effectiveness of the proposed technique. In addition, an experimental test rig is implemented for practical validation of the of the enhanced performance of the proposed technique.

The use of the semi-empirical method to establish a damping model for tire-soil system

  • Cuong, Do Minh;Ngoc, Nguyen Thi;Ran, Ma;Sihong, Zhu
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.395-406
    • /
    • 2018
  • This paper proposes a linear damping model of tire-soil system using semi-empirical method. A test rig was designed and developed to measure the vertical equivalent linear damping ratio of tire only and tire-soil system using Free-Vibration Logarithmic Decay Method. The test was performed with two kinds of tractor tires using a combination of five inflation pressure levels, two soil depths and four soil moisture contents in the paddy soil. The results revealed that the linear damping ratio of tires increased with decreasing tire inflation pressure; the linear damping ratio of tire-soil system also increased with decreasing tire inflation pressure and increased with the increasing soil depth (observed at 80 and 120 mm). It also increased with a relative increase of soil moisture contents (observed at 37.9%, 48.8%, 66.7% and 77.4%). The results also indicated that the damping ratio of tire-soil system was higher than that of tire only. A linear damping model of tire-soil system is proposed as a damping model in parallel which is established based on experimental results and vibration theory. This model will have a great significance in study of tractor vibration.

A Study on the Characteristics of Steering Angle Sensor using Magnetic Induction (자기유도를 이용한 조향각 센서의 특성 연구)

  • Kim, Byeong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.48-55
    • /
    • 2010
  • We have development the steering angle sensor using not only detecting parts but also integrating technique with semiconductors for automobile applications. The performance design and analysis of the steering angle sensor for intelligent vehicles is complicated due to variety of parameters. In this study, the performance characteristics of the angle sensor were analyzed using test rig. By means of magnetic induction technique, these new the steering angle sensors showed excellent magnetic characteristics. The detection range of steering angle sensor obtained was ${\pm}800^{\circ}$, the maximum non-linearity is 0.744% Full Span and the temperature range was $-40^{\circ}C{\sim}+125^{\circ}C$. With this conclusive, the inductive angle sensor was quite satisfactory for many applications in intelligent vehicles.

Performance Prediction of solenoid Actuated Hydrogen Injector (솔레노이드 구동 수소인젝터의 성능예측)

  • 이형승;이용규;김한조;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.174-185
    • /
    • 1997
  • The performance of the solenoid actuated hydrogen injector and the capacitive peak-hold type driving circuit was predicted through the modeling of the injector and the driving circuit the modeling was composed of the driving circuit, the solenoid, the moving parts of the injector, and the hydrogen injection system. The performance of the injector through the modeling was compared with the results of the solenoid and injector rig tests, and those were consistent with each other. Through the prediction of the injector performance, the effects of the components such as electrical resistor, capacitor, and injector spring are easily known to the injector performance required.

  • PDF

Study on the Application of the Electric Drive System of Fuel Pump for Diesel Engine of Commercial Vehicle using HILS (HILS기반 상용차 디젤엔진용 연료펌프의 전기구동 시스템 적용에 관한 연구)

  • Ko, Youngjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.166-174
    • /
    • 2014
  • Fuel injection pressure has steadily increased in diesel engines for the purpose of improving fuel efficiency and cleaning exhaust gas, but it has now reached a point, where the cost for higher pressure does not warrant additional gains. Common rail systems on modern diesel engines have fuel pumps that are mechanically driven by crankshaft. The pumps actually house two pumping module inside: a low pressure pump component and a high pressure pump component. Part of the fuel compressed by the low pressure component returns to the tank in the process of maintaining the pressure in the common rail. Since the returning fuel represents pumping loss, fuel economy improves if the returned fuel can be eliminated by using a properly controled electrical fuel pump. As the first step in developing an electrical fuel pump the fuel supply system on a 6 liter diesel engine was modeled with AMESim to analyze the workload and the fuel feed rate of the injection pump, and the results served as basis for selecting a suitable servo motor and a reducer to drive the pump. A motor controller was built using a DSP and a program which controls the common rail pressure using a proportional control method based on the target fuel pressure information from the engine ECU. A test rig to evaluate performance of the fuel pump is implemented and used to show that the newly developed electrically driven fuel pump can satisfy the fuel flow demand of the engine under various operating conditions when the rotational speed of the pump is adequately controlled.

Development of an electric powered, high speed, low-noise, small aerial target drone platform (전기 동력 고속 저소음 소형 대공 표적기 플랫폼 개발)

  • Taekyoon Kim;Youngjin Kim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.76-85
    • /
    • 2024
  • Recently, from a global perspective, the use of small unmanned aerial vehicles in terrorism and warfare is increasing, and the need for anti-drone shooting training targeting small UAVs is increasing. However, in reality, there are many cases in Korea where anti-drone shooting training is restricted, due to complaints such as noise. In this paper, we describe the development and testing of an electric-powered direct strike type high-speed, low-noise small aerial target drone. To achieve the flight speed and endurance required for shooting training, target drone sizing was performed, and aerodynamic performance analysis was conducted using a CFD program. Based on the performance analysis, the motor propulsion system was selected and a variable pitch propeller system was designed, and performance tests were performed on a ground test rig. Finally, the target flight speed, flight time, and flight noise level were confirmed through flight tests.

A Study of Ignition Performance on the Annular Combustor with Rotating Fuel Injection System (회전분무시스템을 가진 환형연소기의 점화성능 연구)

  • Lee, Gang-Yeop;Lee, Dong-Hun;Choe, Seong-Man;Park, Jeong-Bae;Kim, Hyeong-Mo;Park, Yeong-Il;Go, Yeong-Seong;Han, Yeong-Min;Yang, Su-Seok;Lee, Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.60-65
    • /
    • 2003
  • An experimental study was performed to understand ignition characteristics of gas turbine combustor with rotating fuel injection system. Liquid fuel applied to the inner surface of rotating fuel nozzle which was driven by high speed electrical motor is flung away by centrifugal forces. The real scale combustor and test rig was manufactured and tested under atmospheric condition in KARl combustion test facility. From the test results, this combustor ignition characteristics are highly dependent upon fuel nozzle rotating speed. Futhermore, combustor exit gas temperature was rapidly changed by increasing or decreasing the fuel nozzle rotating speed.