• Title/Summary/Keyword: Electrical stimulus

Search Result 199, Processing Time 0.024 seconds

Effect of Electrical Muscle Stimulation Training With and Without Superimposed Voluntary Contraction on Rectus Femoris and Vastus Intermedius Thickness and Knee Extension Strength

  • Weon, Young-soo;Kim, Jun-hee;Gwak, Gyeong-tae;Lee, Do-eun;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.29 no.2
    • /
    • pp.140-146
    • /
    • 2022
  • Background: The superimposed technique (ST) involves the application of electrical muscle stimulation (EMS) during voluntary muscle action. The physiological effects attributed to each stimulus may be accumulated by the ST. Although various EMS devices for the quadriceps muscle are being marketed to the general public, there is still a lack of research on whether ST training can provide significant advantages for improving quadriceps muscle strength or thickness compared with EMS alone. Objective: To compare the effects of eight weeks of ST and EMS on the thicknesses of the rectus femoris (RF) and vastus intermedius (VI) muscles and knee extension strength. Methods: Thirty healthy subjects were recruited and randomly assigned to either the ST or EMS groups. The participants underwent ST or EMS training for eight weeks. In all participants, the thicknesses of the RF and VI muscles were measured before and after the 8-week intervention by ultrasonography, and quadriceps muscle strength was measured using the Smart KEMA tension sensor (KOREATECH Co., Ltd.). Results: There were significant differences in the pre- and post-intervention thicknesses of the RF and VI muscles as well as the quadriceps muscle strength in both groups (p < 0.05). RF thickness was significantly greater in the ST group (F = 4.294, p = 0.048), but there was no significant difference in VI thickness (F = 0.234, p = 0.632) or knee extension strength (F = 0.775, p = 0.386). Conclusion: EMS can be used to improve quadriceps muscle strength and RF and VI muscle thickness, and ST can be used to improve RF thickness in the context of athletic training and fitness.

Multiple consecutive-biphasic pulse stimulation improves spatially localized firing of retinal ganglion cells in the degenerate retina

  • Jungryul Ahn;Yongseok Yoo;Yong Sook Goo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.6
    • /
    • pp.541-553
    • /
    • 2023
  • Retinal prostheses have shown some clinical success in restoring vision in patients with retinitis pigmentosa. However, the post-implantation visual acuity does not exceed that of legal blindness. The reason for the poor visual acuity might be that (1) degenerate retinal ganglion cells (RGCs) are less responsive to electrical stimulation than normal RGCs, and (2) electrically-evoked RGC spikes show a more widespread not focal response. The single-biphasic pulse electrical stimulation, commonly used in artificial vision, has limitations in addressing these issues. In this study, we propose the benefit of multiple consecutive-biphasic pulse stimulation. We used C57BL/6J mice and C3H/HeJ (rd1) mice for the normal retina and retinal degeneration model. An 8 × 8 multi-electrode array was used to record electrically-evoked RGC spikes. We compared RGC responses when increasing the amplitude of a single biphasic pulse versus increasing the number of consecutive biphasic pulses at the same stimulus charge. Increasing the amplitude of a single biphasic pulse induced more RGC spike firing while the spatial resolution of RGC populations decreased. For multiple consecutive-biphasic pulse stimulation, RGC firing increased as the number of pulses increased, and the spatial resolution of RGC populations was well preserved even up to 5 pulses. Multiple consecutive-biphasic pulse stimulation using two or three pulses in degenerate retinas induced as much RGC spike firing as in normal retinas. These findings suggest that the newly proposed multiple consecutive-biphasic pulse stimulation can improve the visual acuity in prosthesis-implanted patients.

Study on frequency response of implantable microphone and vibrating transducer for the gain compensation of implantable middle ear hearing aid (이식형 마이크로폰과 진동체를 갖는 인공중이의 이득 보상을 위한 주파수 특성 고찰)

  • Jung, Eui-Sung;Seong, Ki-Woong;Lim, Hyung-Gyu;Lee, Jang-Woo;Kim, Dong-Wook;Lee, Jyung-Hyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.361-368
    • /
    • 2010
  • ACROSS device, which is composed of an implantable microphone, a signal processor, and a vibrating transducer, is a fullyimplantable middle ear hearing device(F-IMEHD) for the recovery of patients with hearing loss. And since a microphone is implanted under skin and tissue at the temporal bones, the amplitude of the sound wave is attenuated by absorption and scattering. And the vibrating transducer attached to the ossicular chain caused also the different displacement from characteristic of the stapes. For the gain control of auditory signals, most of implantable hearing devices with the digital audio signal processor still apply to fitting rules of conventional hearing aid without regard to the effect of the implanted microphone and the vibrating transducer. So it should be taken into account the effect of the implantable microphone and the vibrating transducer to use the conventional audio fitting rule. The aim of this study was to measure gain characteristics caused by the implanted microphone and the vibrating transducer attached to the ossicle chains for the gain compensation of ACROSS device. Differential floating mass transducers (DFMT) of ACROSS device were clipped on four cadaver temporal bones. And after placing the DFMT on them, displacements of the ossicle chain with the DFMT operated by 1 $mA_{peak}$ current was measured using laser Doppler vibrometer. And the sensitivity of microphones under the sampled pig skin and the skin of 3 rat back were measured by stimulus of pure tones in frequency from 0.1 to 8.9 kHz. And we confirmed that the microphone implanted under skin showed poorer frequency response in the acoustic high-frequency band than it in the low- to mid- frequency band, and the resonant frequency of the stapes vibration was changed by attaching the DFMT on the incus, the displacement of the DFMT driven with 1 $mA_{rms}$ was higher by the amount of about 20 dB than that of cadaver's stapes driven by the sound presssure of 94 dB SPL in resonance frequency range.

'OFF' Response and Its Characteristics of Guinea Pig Ureter (기니픽 요관(尿管)에 있어서 OFF Response 발생과 그 특징)

  • Hong, K.W.;Rhim, B.Y.;Peter Binancani;Weiss Robert M.
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.1 s.26
    • /
    • pp.25-34
    • /
    • 1980
  • The in vitro guinea pig ureter responded to 5 sec trains of electrical stimuli with two contractions; the first an 'on response' (ON) occurred with $0.1{\sim}0.3$ sec after the onset o the stimulus train, the second an 'off response'(OFF) occurred $0.2{\sim}1.0$ sec after the termination of the stimulus train. Relaxation occurred between the two responses during a time when the stimulus was still being delivered. Longer duration and/or higher frequencies of stimuli within the train were required to elicit the OFF than the ON. Decreasing temperature from $37^{\circ}$ to $22^{\circ}$ decreased ON amplitude and increased OFF amplitude. $Ca^{++}$-free solution, 2 mM EDTA, 1 mM $Mn^{++}$ or $1{\mu}M$ verapamil rapidly abolished ON. OFF persisted when ON had disappeared by repeated stimulation at 0.12 train per sec. Conversely, caffeine, $50{\mu}M$ and theophylline, $10{\mu}M$ abolished OFF with only slight reduction of ON, and sodium nitroprusside decreased preferentially ON amplitude rather than OFF. Relaxation between ON and OFF was incomplete in low $Na^+$ solution. ON and OFF were not affected by the neural blockers tetrodotoxin, atropine or phentolamine, also pyrilamine and methysergide, and relaxation between ON and OFF was $Na^+$ dependent. Furthermore, ON depends on free $Ca^{++}$ and OFF is more dependent on bound or stored $Ca^{++}$.

  • PDF

Inverse Characterization Method Based on 9 Channel Tone Response Curves for Display Device (디스플레이 장치를 위한 9개 채널 계조 응답 곡선에 기반한 역 특성화 기법)

  • Im, Hye-Bong;Cho, Yang-Ho;Park, Kee-Hyon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.85-94
    • /
    • 2005
  • Display characterization, deriving the relationship between digital input values and the corresponding CIEXYZ tri-stimulus values, is important to reproduce the accurate color in color management system. The relationship can be estimated from the nine channel TRCs(tone response curves) and the result of this characterization method is better than that of using three channel TRCs. However, the inverse display characterization using nine channel TRCs cannot be directly inverted because the CIEXYZ values corresponding to each of RGB values are inseparable. Accordingly, inverse display characterization is usually implemented by the 3D-LUT (look-up table) method. Although the result of 3B-LUT is accurate, creating the 3D-LUT requires a lot of memory space and considerable amount of measurements. Therefore the inverse characterization method is proposed based on the modeling of channel-dependent values and nine channel inverse process based on the GOG(gain, offset gamma) model. The proposed method enhances the accuracy of display characterization and reduces the complexity and the number of measurements data required for accuracy in 3-D LUT.

Role of the Vestibular and Medullary Reticular Neuclei for the Motor Evoked Potentials in Rats (흰쥐의 운동유발전위에 대한 전정신경핵과 연수망상핵의 역할)

  • Lee, Moon-Young;Lee, Sung-Ho;Kim, Jae-Hyo;Park, Byung-Rim;Kim, Min-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.603-611
    • /
    • 1997
  • The motor evoked potentials (MEPs) have been advocated as a method of monitoring the integrity of spinal efferent pathways in various injury models of the central nervous system. However, there were many disputes about origin sites of MEPs generated by transcranial electrical stimulation. The purpose of present study was to investigate the effect of major extrapyramidal motor nuclei such as lateral vestibular nucleus (VN) and medullary reticular nucleus (mRTN) on any components of the MEPs in adult Sprague-Dalwey rats. MEPs were evoked by electrical stimulation of the right sensorimotor cortex through a stainless steel screw with 0.5mm in diameter, and recorded epidurally at T9 - T10 spinal cord levels by using a pair of teflon-coated stainless steel wire electrodes with 1mm exposed tip. In order to inject lidocaine and make a lesion, insulated long dental needle with noninsulated tips were placed stareotoxically in VN and mRTN. Lidocaine of $2{\sim}3\;{\mu}l$ was injected into either VN or mRTN. The normal MEPs were composed of typical four reproducible waves; P1, P2, P3, P4. The first wave (P1) was shown at a mean latency of 1.2 ms, corresponding to a conduction velocity of 67.5 m/sec. The latencies of MEPs were shortened and the amplitudes were increased as stimulus intensity was increased. The amplitudes of P1 and P2 were more decreased among 4 waves of MEPs after lidocaine microinjection into mRTN. Especially, the amplitude of P1 was decreased by 50% after lidocaine microinjection into bilateral mRTN. On the other hand, lidocaine microinjection into VN reduced the amplitudes of P3 and P4 than other MEP waves. However, the latencies of MEPs were not changed by lidocaine microinjection into either VN or mRTN. These results suggest that the vestibular and reticular nuclei contribute to partially different role in generation of MEPs elicited by transcranial electrical stimulation.

  • PDF

Activation of Lumbar Spinal Neurons by Forelimb Afferent Inputs in Cats (상지구심성 입력에 의한 요수팽대부 척수세포의 활성화)

  • Ku, Ja-Ran;Lee, Ae-Joo;Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.409-420
    • /
    • 1989
  • Extracellular recordings were made from the spinal neurons in the lumbar enlargement of 16 cats before and during electrical stimulation of the radial nerve ipsilaterally and contralaterally. Only neurons activated by remote nerve stimulation (RNS) were included in sample. All the cell classes of spinal neurons which received afferents message from the skin and/or muscles were activated by RNS except LT cells. Approximately three quaters of cells activated by RNS had an inhibitory receptive field (RF) on the ipsilateral hindlimb and two thirds of RNS-activated neurons showed spontaneous activity. The most of these RNS-activated cells seemed to be in deep dorsal horn and in ventral horn as well. Stimulation of contralateral radial nerve produced activation of spinal neurons almost same degree as by ipsilateral nerve stimulation. The optimal stimulation parameters of radial nerve for activation of spinal cells were 5Hz-0.5 msec-2V while threshold stimulus for activation was approximately 0.18 V. Following close intra-arterial injection of $K^+$ ion excitability of RNS-activated neuron was increased in 4 of 8 cells whereas it was decreased in 2 of 8 cells. The results indicate that there are some spinal neurons in the lumbar enlargement of cats that can be activated by forelimb afferent $(A{\beta}\;&\;A{\delta})$ inputs.

  • PDF

Experimental investigation of Scalability of DDR DRAM packages

  • Crisp, R.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.73-76
    • /
    • 2010
  • A two-facet approach was used to investigate the parametric performance of functional high-speed DDR3 (Double Data Rate) DRAM (Dynamic Random Access Memory) die placed in different types of BGA (Ball Grid Array) packages: wire-bonded BGA (FBGA, Fine Ball Grid Array), flip-chip (FCBGA) and lead-bonded $microBGA^{(R)}$. In the first section, packaged live DDR3 die were tested using automatic test equipment using high-resolution shmoo plots. It was found that the best timing and voltage margin was obtained using the lead-bonded microBGA, followed by the wire-bonded FBGA with the FCBGA exhibiting the worst performance of the three types tested. In particular the flip-chip packaged devices exhibited reduced operating voltage margin. In the second part of this work a test system was designed and constructed to mimic the electrical environment of the data bus in a PC's CPU-Memory subsystem that used a single DIMM (Dual In Line Memory Module) socket in point-to-point and point-to-two-point configurations. The emulation system was used to examine signal integrity for system-level operation at speeds in excess of 6 Gb/pin/sec in order to assess the frequency extensibility of the signal-carrying path of the microBGA considered for future high-speed DRAM packaging. The analyzed signal path was driven from either end of the data bus by a GaAs laser driver capable of operation beyond 10 GHz. Eye diagrams were measured using a high speed sampling oscilloscope with a pulse generator providing a pseudo-random bit sequence stimulus for the laser drivers. The memory controller was emulated using a circuit implemented on a BGA interposer employing the laser driver while the active DRAM was modeled using the same type of laser driver mounted to the DIMM module. A custom silicon loading die was designed and fabricated and placed into the microBGA packages that were attached to an instrumented DIMM module. It was found that 6.6 Gb/sec/pin operation appears feasible in both point to point and point to two point configurations when the input capacitance is limited to 2pF.

Characterization of Electroacupuncture Effects on the Responses of Rat Dorsal Horn Neurons to Noxious Stimulation (전침자극이 흰쥐척수후각세포의 유해자극반응에 미치는 효과의 특성)

  • Shin, Hong-kee;Park, Dong-suk;Lee, Seo-eun;Kim, Jin-hyuk
    • Journal of Acupuncture Research
    • /
    • v.19 no.4
    • /
    • pp.167-182
    • /
    • 2002
  • This experiment was designed to investigate the effects of electroacupuncture (EA) on chronic pains and factors that affected EA effects. The responses of wide dynamic range (WDR) cells to electrical stimulation of $A{\delta}$ & C afferent fibers were used as an index of pain in rats with chronic pains induced by intraplantar injection of complete Freund's adjuvant or peripheral nerve injury. In rats with chronic pains, low (2Hz) and high (100Hz) frequency EA stimulation applied to zusanli caused the inhibition of WDR cell responses in about 60% of rats and the inhibitory actions were dependent on the stimulus strength. EA stimulation also induced an excitation of WDR cell responses in 23.9% of rats and no effect in 15.8% of rats. However, it seemed that in normal rats compared to the rat with chronic pains, the incidence of which EA stimulation caused the excitation or no effect was high. Reversible spinalization almost completely blocked EA-induced inhibitory or excitatory effects. EA stimulation more frequently induced the excitation of WDR cell responses in lightly anesthetized (0.6%) rats and the enhanced responses of WDR cells were inhibited by EA stimulation in the rat anesthetized with 1.5% enflurane. These experimental findings suggest that in rats with chronic pain, EA stimulation inhibited WDR cell responses to slow $A{\delta}$ and C fiber stimulation and EA-induced inhibitory action was under the control of descending inhibitory system and degree of anesthesia.

  • PDF

The Corrosiveness Evaluation according to the Needle Material in the Electroacupuncture Operation (전침 시술시 침 재료에 따른 부식성 평가)

  • Kwon, O-Sang;Choi, Kwang-Ho;Cho, Sung-Jin;Ryu, Yeon-Hee;Choi, Sun-Mi;Lee, Sang-Hoon
    • Korean Journal of Acupuncture
    • /
    • v.29 no.2
    • /
    • pp.216-223
    • /
    • 2012
  • Objectives : Electroacupuncture is widely used because of its diverse curative influence. However, its electrical safety is not guaranteed when applied on the human body. Therefore, in this study, we did research on the corrosiveness of electroacupuncture when applied on the body fluid. Methods : We did research using acupuncture needles which were made of STS304 or STS316 and which were coated or not coated in silicone. They were 0.25 mm in diameter and 40 mm in length. We immersed them to the depth of about 1cm in Hank's Solution and gave a stimulus in 120 Hz for 60 minutes. Then, we measured the pH of Hank's solution and mass of needles and observed their shape. Results : Acupuncture needles which were made of STS304 corroded more easily than those which were made of STS316 when they were applied on the human body. Acupuncture needles which were coated in silicone corroded much more easily than those which were not coated in silicone when they were applied on the body fluid. Conclusions : In this study, we did research on the corrosiveness of electroacupuncture when it is applied on the body fluid using several acupuncture needles. We made a conclusion that when acupuncture needles were applied on the body fluid, the coated one made of STS304 corrodes more easily than the uncoated one made of STS316. We hope that additional further researches on the effect of the corrosiveness of an acupuncture needle will be carried out.