• Title/Summary/Keyword: Electrical response

Search Result 3,677, Processing Time 0.031 seconds

Interaction of Forskolin with the Effect of $N^6-Cyclopentyladenosine$ on $[^3H]-Acetylcholine$ Release in Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 미치는 $N^6-Cyclopentyladenosine$ 및 Forskolin의 영향)

  • Choi, Bong-Kyu;Park, Hie-Man;Kang, Yeon-Wook;Kook, Young-Johng
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.129-136
    • /
    • 1992
  • As it has been reported that the depolarization-induced acetylcholine (ACh) release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus and various lines of evidence indicate the involvement of adenylate cyclase system in $A_1-adenosine$ post-receptor mechanism in hippocampus, it was attempted to delineate the role of adenylate cyclase system in the $A_1-receptor-mediated$ control of ACh release in this study. Slices from rat hippocampus were incubated with $[^3H]-choline$ and the release of the labelled products was evoked by electrical stimulation $(3\;Hz,\;5\;Vcm^{-1},\;2\;ms,\;rectangular\;pulses)$, and the influence of various agents on the evoked tritium-outflow was investigated. $N^6-cyclopentyladenosine$ (CPA), a specific $A_1-adenosine$ receptor agonist, in concentrations ranging from 0.1 to $10\;{\mu}M$, decreased the $[^3H]-ACh$ release in a dose-dependent manner without the changes of basal rate of release. 8-cyclopentyl-1,3-dipropylxanthine $(DPCPX,\;1{\sim}10\;{\mu}M)$, a selective $A_1-receptor$ antagonist, increased the $[^3H]-ACh$ release in a dose-related fashion with slight increase of basal tritium-release. And the CPA effects were significantly inhibited by DPCPX $(2\;{\mu}M)$ pretreatment and the dose-response curve produced by CPA was shifted to the right. The responses to N-ethylmaleimide $(NEM,\;10\;&\;30\;{\mu}M)$, a SH-alkylating agent of G-protein, were characterized by increments of the evoked ACh-release and the basal release, and the CPA effect were completely abolished by NEM pretreatment. Forskolin, a specific adenylate cyclase activator, in concentrations ranging from 0.3 to $10\;{\mu}M$, increased the evoked ACh-release in a dose-dependent manner and the CPA effects were inhibited by forskolin. These results indicate that the $A_1-adenosine$ heteroreceptor plays an important role in ACh-release via nucleotide-binding protein Gi in the rat hippocampus and that the adenylate cyclase system might be participated in this process.

  • PDF

Evaluation of Growth Inhibition Causes on Perennial Ryegrass(Lolium perennial L.) in Afforesting Area (인공배양토 식생지역에서의 페레니얼 라이그래스 생육저해 원인 평가)

  • Lee, In-Bog;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.212-219
    • /
    • 2004
  • To minimize the danger of soil erosion and settle habitats earlier, afforestation, which vegetates bare slopes, is selected as an environmental recovering technology. Large portions of these areas often are suffered by a bad germination and growth inhibition of sprayed seeds. Afforested materials collected in the normal and damaged sites were not any big difference in chemical characteristics and biological response to ryegrass. But background soil of the damaged site has very low pH (3.6) and high contents of iron and aluminum compared with them of the normal sites. Both germination and root growth of ryegrass were inhibited severely in the water extracts of damaged soils, but not in the water extracts of normal sites. Groundwater collected nearby the damaged sites was very strong acidic (pH 33) and exhibited a high value of electrical conductivity and high contents of iron and aluminum. In the ground water, germinated ryegrass was scarcely grown. In Al standard solution, the root growth of ryegrass was inhibited over 50% in 0.5 mM in pH 3.5-4.5 and in 1.4 mM in pH 5.5, which seems to be related to $Al^{3+}$ activity in solution. In the ferric Fe ($Fe^{3+}$) standard solution, ryegrass growth was inhibited over 50% in the concentration of 14-19 mM in root and 23-25 mM in shoot. This strong tolerance of ryegrass to $Fe^{3+}$ might be concerned with the very low activity of $Fe^{3+}$ at pH 3.5-5.5. In contrast, ryegrass responded very sensitively to ferrous Fe ion ($Fe^{2+}$), especially in root growth: $Fe^{2+}$ concentrations corresponding to 50% growth reduction were 0.3-0.4 mM at pH 3.5-5.5 in roots. This high growth inhibition should be related to the high ion activity of $Fe^{2+}$ irrespective of different pH conditions. In conclusion, low pH and high contents of $Fe^{2+}$ and aluminum seem to be caused by pyrite and be closely related to the growth inhibition of ryegrass seeded in afforested area.

Growth Performance, Carcass Characteristics and Plasma Mineral Chemistry as Affected by Dietary Chloride and Chloride Salts Fed to Broiler Chickens Reared under Phase Feeding System

  • Mushtaq, M.M.H.;Pasha, T.N.;Akram, M.;Mushtaq, T.;Parvin, R.;Choi, H.C.;Hwangbo, J.;Kim, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.845-855
    • /
    • 2013
  • Requirements of dietary chloride (dCl) and chloride salts were determined by using $4{\times}2$ factorial arrangement under four phase feeding program. Four levels (0.31, 0.45, 0.59 and 0.73%) and two sources ($NH_4Cl$ and $CaCl_2$) of the dCl were allocated to 1,472 chicks in eight dietary treatments in which each treatment was replicated four times with 46 birds per replicate. The four phase feeding program was comprised of four dietary phases: Prestarter (d 1 to 10), Starter (d 11 to 20), Grower (d 21 to 33) and Finisher (d 34 to 42); and diets were separately prepared for each phase. The cations, anions, pH, dissolved oxygen (DO), temperature, electrical conductivity (EC), total dissolved solids (TDS) and salinity were analyzed in drinking water and were not affected by dietary treatments. BW gain (BWG; $p{\leq}0.009$) and feed:gain (FG; $p{\leq}0.03$) were improved in $CaCl_2$ supplemented diets during d 1 to 10. The maximum response of BWG and FG was observed at 0.38% and 0.42% dCl, respectively, for d 34 to 42. However, the level of dCl for BWG during d 21 to 33 ($p{\leq}0.04$) and d 34 to 42 ($p{\leq}0.009$) was optimized at 0.60% and 0.42%, respectively. The level of dCl for optimized feed intake (FI; $p{\leq}0.006$), FG ($p{\leq}0.007$) and litter moisture (LM; $p{\leq}0.001$) was observed at 0.60%, 0.38% and 0.73%, respectively, for d 1 to 42. Water intake (DWI) was not affected by increasing dCl supplementation (p>0.05); however, the ratio between DWI and FI (DWI:FI) was found highest at 0.73% dCl during d 1 to 10 ($p{\leq}0.05$) and d 21 to 33 ($p{\leq}0.009$). Except for d 34 to 42 ($p{\leq}0.006$), the increasing level of dCl did not result in a significant difference in mortality during any phase. Blood pH and glucose, and breast and thigh weights (percentage of dressed weight) were improved while dressing percentage (DP) and gastrointestinal health were exacerbated with $NH_4Cl$ as compared to $CaCl_2$ supplemented diets ($p{\leq}0.001$). Higher plasma $Na^+$ and $HCO_3{^-}$ and lower $Cl^-$ and $Ca^{{+}{+}}$ were observed in $NH_4Cl$ supplemented diets ($p{\leq}0.001$). Increasing supplementation of dCl increased plasma $Cl^-$ ($p{\leq}0.04$; quadratically) and linearly reduced plasma $K^+$ ($p{\leq}0.001$), $Ca^{{+}{+}}$ ($p{\leq}0.003$), $HCO_3{^-}$ ($p{\leq}0.001$), and $Na^+$ ($p{\leq}0.001$; quadratically). Consequently, higher requirements of dietary chloride are suggested for feed intake; nevertheless, lower levels of dietary chloride are sufficient to support optimal BWG and FG with increasing age. The $NH_4Cl$ supplemented diets ameliorate breast and thigh meat yield along with overall energy balance (glucose).

Geophysical Study on the Geoelectrical Structure of the Hwasan Caldera in the Euisung Sub-basin Using Magnetotelluric Survey (자기지전류 탐사를 이용한 의성소분지 화산 칼데라의 지구물리학적 연구)

  • Yang, Jun-Mo;Kwon, Byung-Doo;Cho, In-Ky;Lee, Heui-Soon;Park, Gye-Soon;Um, Joo-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.99-108
    • /
    • 2008
  • To extend our detailed knowledge for the Hwasan caldera, we carried out magnetotelluric (MT) survey, which is pretty sensitive to electrical property variation in both horizontal and vertical direction of subsurface, across the Hwasan caldera with the direction of EW. The 2-D inversion results of observed MT data lead to following conclusions. Firstly, the depth of the basin basement inferred by the MT inversion results matches well with that suggested by previous potential studies, but the basement resistivity seems fairly low when compared to that of general case. This feature might be related with the large-scaled, highly conductive layer beneath the Euisung Sub-basin suggested by the previous MT study. Secondly, the high resistivity zones reaching to 4000 $\Omega{\cdot}m$ are imaged around two external ring fault boundaries. These zones are thought of as the response of the rhyolitic dykes intruding along the ring fault, and in the previous gravity data correspond to relatively high density anomalies. Thirdly, low resistivity zone reaching to 200 $\Omega{\cdot}m$ is detected around a depth of 1km beneath the central part of the caldera, which has not been yet reported in korean geophysical literatures. If we take account of the evolution model of the Hwasan caldera, this zone is regarded as the past sedimentary layer that subsided during the period of forming external ring fault system. In addition, the relatively low density anomaly observed in the central part of the caldera may be attributed to this sedimentary layer.

Growth Response of Lettuce to Various Levels of EC and Light Intensity in Plant Factory (배양액 농도와 광도가 식물공장에서 재배되는 적축면 상추의 생장에 미치는 영향)

  • Cha, Mi Kyung;Kim, Ju-Sung;Cho, Young Yeol
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.305-311
    • /
    • 2012
  • To investigate the influence electrical conductivity (EC) of nutrient solution and light intensity on growth of red leafy lettuce, fresh and dry weights, number of leave, chlorophyll concentration and production efficiency were evaluated through nutrient film technique system. The levels of EC were 0.5, 1.0, 1.5, 2.0, 3.0, and $6.0dS{\cdot}m^{-1}$, and those of light intensity were 120, 150, and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Under photoperiod of 16 h/day, the temperature was maintained in the range of $20{\sim}25^{\circ}C$. Planting density was $10{\times}10cm$ (100 plants/$m^2$). When red leafy lettuce were grown in the EC range of $0.5{\sim}1.5dS{\cdot}m^{-1}$, the fresh and dry weights decreased as the EC levels and light intensity were lowered, however, Hunter's a value showed no significant differences among the treatments of EC and light intensity levels (Ex. 1). The fresh and dry weights and production efficiency ($g{\cdot}FW/kw$) were the highest in the treatment of $3.0dS{\cdot}m^{-1}$ and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ when crops were grown under the EC range of EC $1.5{\sim}6.0dS{\cdot}m^{-1}$ (Ex. 2). But the fresh and dry weights, number of leaves, and production efficiency of $2.0dS{\cdot}m^{-1}$ were the highest when the light intensity was $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ (Ex. 3). The SPAD value increased gradually as EC levels were elevated. From the above results, we concluded that optimum levels of EC and light intensity were $2.0dS{\cdot}m^{-1}$ and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively, for production as well as production efficiency of red leaf lettuce in plant factory.

Application Effects of Biochar Derived from Pruned Stems of Pear Tree on Growth of Crops and Soil Physico-chemical Properties (배 전정지 바이오차 시용이 작물 생육 및 토양이화학성에 미치는 영향)

  • Jang, Jae-Eun;Lim, Gab-June;Park, Jung-Soo;Shim, Jae-Man;Kang, Chang-Sung;Hong, Sun-Seong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2018
  • This study was conducted to develop the manufacturing method of biochar using pruned stems of pear tree and its application effect on the crop growth and soil physico-chemical properties. In this study, biochar derived from pruned stems of pear tree at heating temperature of $300^{\circ}C$, $500^{\circ}C$ and $700^{\circ}C$ in heating times of 2, 3 and 4 hours, were tested in the changes of their chemical properties during biochar processing. The pH, Exch. K, Exch. Mg and cation exchange capacity (CEC) increased as the pyrolysis temperature increased during the production of biochar, and the change of these properties rapidly occurred at $500^{\circ}C$. However, as the pyrolysis temperature increased, ash content increased and total carbon (T-C), yield decreased. And the change of the properties in response to the heating time was not shown. It was thought that it would be desirable to set the production conditions of biochar at $500^{\circ}C$ for 2 hours in consideration of the change of chemical properties and the ash content and yield. And also, were conducted the experiments to establish manufacturing method of farm-made biochar using drum biochar manufacturing machine and investigate the application effects of biochar on the cultivation of chinese cabbage and tomato. Application of biochar derived from pruned stems of pear tree could enhance pH, organic matter (OM), total carbon (T-C) of soil. On the other hand, soil electrical conductivity (EC), NO3-N were lowered compared to the control which has no application. The bulk density, porosity and aggregate formation of soil were improved by biochar application. The fresh matter yields of chinese cabbage and tomato were significantly increased in proportion to the application rate of biochar. This study demonstrated the effect of the biochar derived from agricultural byproduct to be as a low cost potential soil ameliorant by physico-chemical properties in eco-friendly greenhouse cultivation.

Development of Digital Transceiver Unit for 5G Optical Repeater (5G 광중계기 구동을 위한 디지털 송수신 유닛 설계)

  • Min, Kyoung-Ok;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.156-167
    • /
    • 2021
  • In this paper, we propose a digital transceiver unit design for in-building of 5G optical repeaters that extends the coverage of 5G mobile communication network services and connects to a stable wireless network in a building. The digital transceiver unit for driving the proposed 5G optical repeater is composed of 4 blocks: a signal processing unit, an RF transceiver unit, an optical input/output unit, and a clock generation unit. The signal processing unit plays an important role, such as a combination of a basic operation of the CPRI interface, a 4-channel antenna signal, and response to external control commands. It also transmits and receives high-quality IQ data through the JESD204B interface. CFR and DPD blocks operate to protect the power amplifier. The RF transmitter/receiver converts the RF signal received from the antenna to AD, is transmitted to the signal processing unit through the JESD204B interface, and DA converts the digital signal transmitted from the signal processing unit to the JESD204B interface and transmits the RF signal to the antenna. The optical input/output unit converts an electric signal into an optical signal and transmits it, and converts the optical signal into an electric signal and receives it. The clock generator suppresses jitter of the synchronous clock supplied from the CPRI interface of the optical input/output unit, and supplies a stable synchronous clock to the signal processing unit and the RF transceiver. Before CPRI connection, a local clock is supplied to operate in a CPRI connection ready state. XCZU9CG-2FFVC900I of Xilinx's MPSoC series was used to evaluate the accuracy of the digital transceiver unit for driving the 5G optical repeater proposed in this paper, and Vivado 2018.3 was used as the design tool. The 5G optical repeater digital transceiver unit proposed in this paper converts the 5G RF signal input to the ADC into digital and transmits it to the JIG through CPRI and outputs the downlink data signal received from the JIG through the CPRI to the DAC. And evaluated the performance. The experimental results showed that flatness, Return Loss, Channel Power, ACLR, EVM, Frequency Error, etc. exceeded the target set value.