• 제목/요약/키워드: Electrical resistance change

검색결과 499건 처리시간 0.036초

Fatigue damage detection of CFRP using the electrical resistance change method

  • Todoroki, Akira;Mizutani, Yoshihiro;Suzuki, Yoshiro;Haruyama, Daichi
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.350-355
    • /
    • 2013
  • Electrical resistance change measurements were performed, to detect fatigue damage of a quasi-isotropic CFRP and cross-ply CFRP laminates. A four-probe method was used to measure the exact electrical resistance change. A three-probe method was used to measure the electrical contact resistance change, during long cyclic loading. The specimen side surface was observed using a video-microscope to detect damage. The measured electrical resistance changes were compared with the observed damage. The results of this study show that the electrical resistance increase of the quasi-isotropic laminate was caused by a delamination crack between ${\pm}45^{\circ}$ plies. Matrix cracking caused a small electrical resistance increase of the cross-ply laminate, but the decreased electrical resistance caused by the shear-plastic deformation impedes matrix-cracking detection.

목본식물 형성층 전기저항에 영향을 주는 환경 요인 (Effects of Environmental Factors on the Cambial Electrical Resistance of Woody Plants)

  • 김동욱;김민수;이부용
    • 한국조경학회지
    • /
    • 제35권3호
    • /
    • pp.105-113
    • /
    • 2007
  • This study was conducted to analyze the effects of environmental factors such as soil moisture, light intensity, temperature and humidity on changes in cambial electrical resistance. To improve data quality, cambial electrical resistance was continuously measured at fixed points by using a data logger isolated from alternating current. The relationship between environmental factors and changes in cambial electrical resistance was also analyzed. The results are as follows: 1. Cambial electrical resistance is highly correlated to the temperature of the measured area(r=-0.934). Therefore, temperature compensation is needed to analyze the effects of other environmental factors on cambial electrical resistance changes. 2. If temperature is compensated for, the change of cambial electrical resistance is highly correlated to water vapor pressure(r=-0.836). 3. If temperature and humidity are compensated for, the change of cambial electrical resistance is highly correlated to intensity of light(r=-0.738). 4. Diurnal deviation of soil water potential is not more significantly related than the change of cambial electrical resistance. However, in the long-term, soil water potential and cambial electrical resistance are highly correlated(r=-0.831). This indicates that soil moisture significantly influences the long-term change of cambial electrical resistance.

Correlation Between Mechanical Behavior and Electrical Resistance Change in Carbon Particle Dispersed Plastic Composite

  • Song, D.Y.;Takeda, N.;Kim, J.K.
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.377-382
    • /
    • 2001
  • Mechanical behavior and electrical resistance change of CPDP (carbon particle dispersed plastic) composite consisting of epoxy resin and conductive carbon particle were investigated under monotonic loading and repeated loading-unloading. The electrical resistance almost linearly increased with increasing strain during loading and the residual electrical resistance was observed even after removing load. The value of the residual electrical resistance was dependent on the maximum strain under the applied stress. This result suggests that the estimation of maximum strain (i.e., damage) is possible by the measuring electrical resistance of composite. The behavior of electrical resistance change during and after loading was discussed on the basis of the results of microscopic deformation and fracture observation. Moreover, the relationship between the volume fraction of carbon particle and the electrical resistivity of CPDP was investigated in relation to the percolation theory. Simulation model of percolation structure was established by Monte Carlo method and the simulation result was compared to the experimental results. The electrical resistance change under applied loading was analyzed quantitatively using the percolation equation and a simple model for the critical volume fraction of carbon particle as a function of the mechanical stress. It was revealed that the prediction was in good agreement with the experimental result except in the region near the failure of material.

  • PDF

Damage Monitoring of CP-GFRP/GFRP Composites by Measuring Electrical Resistance

  • Shin, Soon-Gi;Kwon, Yong-Jung
    • 한국재료학회지
    • /
    • 제20권3호
    • /
    • pp.148-154
    • /
    • 2010
  • It is necessary to develop new methods to prevent catastrophic failure of structural material in order to avoid accidents and conserve natural and energy resources. Design of intelligent materials with a self-diagnosing function to prevent fatal fracture of structural materials was achieved by smart composites consisting of carbon fiber tows or carbon powders with a small value of ultimate elongation and glass fiber tows with a large value of ultimate elongation. The changes in electrical resistance of CF-GFRP/GFRP (carbon fiber and glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased abruptly with increasing strain, and a tremendous change was seen at the transition point where carbon fiber tows were broken. Therefore, the composites were not to monitor damage from the early stage. On the other hand, the change in electrical resistance of CP-GFRP/GFRP (carbon powder dispersed in glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased almost linearly in proportion to strain. CP-GFRP/GFRP composites are superior to CF-GFRP/GFRP composites in terms of their capability to monitor damage by measuring change in electrical resistance from the early stage of damage. However, the former was inferior to the latter as an application because of the difficulties of mass production and high cost. A method based on monitoring damage by measuring changes in the electrical resistance of structural materials is promising for improved reliability of the material.

Effects of Contact Conditions on the Connector Electrical Resistance of Direct Current Circuits

  • Kim, Young-Tae;Sung, In-Ha;Kim, Jin-San;Kim, Dae-Eun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권3호
    • /
    • pp.5-10
    • /
    • 2004
  • Electric contacts serve the purpose of transmitting electric signals across two conducting components. In this paper, the effects of contact conditions such as surface roughness, oxidation, and contamination were investigated with respect to electrical resistance variation of a connector in a direct current circuit. Such change in the electrical resistance is particularly important for low power circuits. The experimental results showed that compared with the effects of contact surface scratch or oxidation, the effect of contamination on the resistance variation was the most significant. In order to minimize failure due to electrical resistance change at the contact region, proper sealing to prevent contamination from entering the interface is needed.

전기저항 측정에 의한 FRP의 파괴 예측 기능의 평가 (Evaluation of Fracture Detection Function for the FRP by Electrical Resistance Measurement)

  • 신순기;김영희;이준희
    • 한국재료학회지
    • /
    • 제12권2호
    • /
    • pp.135-139
    • /
    • 2002
  • Carbon powders (CP) and carbon fiber (CF) were introduced info glass fiber reinforced plastics (FRP) composites to obtain fracture detection function. The composites were evaluated through the relation between a load-displacement curve and an electrical resistance change curve in three point bending test. CP containing FRP (CP-FRP) has a sensitivity of electrical resistance change at much lower load level than CF containing FRP (CF-FRP). In loading-unloading tests, CP-FRP showed a large amount of residual electrical resistance which enables the estimation of loading hysteresis.

Direct Torque Control Strategy (DTC) Based on Fuzzy Logic Controller for a Permanent Magnet Synchronous Machine Drive

  • Tlemcani, A.;Bouchhida, O.;Benmansour, K.;Boudana, D.;Boucherit, M.S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권1호
    • /
    • pp.66-78
    • /
    • 2009
  • This paper introduces the design of a fuzzy logic controller in conjunction with direct torque control strategy for a Permanent Magnet synchronous machine. A stator flux angle mapping technique is proposed to reduce significantly the size of the rule base to a great extent so that the fuzzy reasoning speed increases. Also, a fuzzy resistance estimator is developed to estimate the change in the stator resistance. The change in the steady state value of stator current for a constant torque and flux reference is used to change the value of stator resistance used by the controller to match the machine resistance.

Monitoring Failure Behaviour of Pultruded CFRP Composites by Electrical Resistance Measurement

  • Mao, Yaqin;Yu, Yunhua;Wu, Dezhen;Yang, Xiaoping
    • Carbon letters
    • /
    • 제5권1호
    • /
    • pp.18-22
    • /
    • 2004
  • The failure behaviours of unidirectional pultruded carbon fiber reinforced polymer (CFRP) composites were monitored by the electrical resistance measurement during tensile loading, three-point-bending, interlaminar shear loading. The tensile failure behaviour of carbon fiber tows was also investigated by the electrical resistance measurement. Infrared thermography non-destructive evaluation was performed in real time during tensile test of CFRP composites to validate the change of microdamage in the materials. Experiment results demonstrated that the CFRP composites and carbon fiber tows were damaged by different damage mechinsms during tensile loading, for the CFRP composites, mainly being in the forms of matrix damage and the debonding between matrix and fibers, while for the carbon fiber tows, mainly being in the forms of fiber fracture. The correlation between the infrared thermographs and the change in the electrical resistance could be regarded as an evidence of the damage mechanisms of the CFRP composites. During three-point-bending loading, the main damage forms were the simultaneity fracture of matrix and fibers firstly, then matrix cracking and the debonding between matrix and fiber were carried out. This results can be shown in Fig. 9(a) and (b). During interlaminar shear loading, the change in the electrical resistance was related to the damage degree of interlaminar structure. Electrical resistance measurement was more sensitive to the damage behaviour of the CFRP composites than the stress/time curve.

  • PDF

하부전극 구조 개선에 의한 상변화 메모리의 전기적 특성 (Electrical characteristic of Phase-change Random Access Memory with improved bottom electrode structure)

  • 김현구;최혁;조원주;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.69-70
    • /
    • 2006
  • A detailed Investigation of cell structure and electrical characteristic in chalcogenide-based phase-change random access memory(PRAM) devices is presented. We used compound of Ge-Sb-Te material for phase-change cell. A novel bottom electrode structure and manufacture are described. We used heat radiator structure for improved reset characteristic. A resistance change measurement is performed on the test chip. From the resistance change, we could observe faster reset characteristic.

  • PDF

열화손상이 발생된 전도성시멘트복합체의 전기저항특성 (Electrical Resistance Characteristics of Conductive Cement Composite with Deterioration Damage)

  • 김영민;이건철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.149-150
    • /
    • 2020
  • Granting self-sensing performance in a building is an important performance to ensure the degree of damage and safety of the building. Since the current research is being conducted in the state before deterioration loss occurs, it is necessary to confirm whether the self-sensing performance is maintained even in the damaged conductive cement composite. As part of the study, electrical resistance characteristics were analyzed in conductive cement composites in which freeze-thawing and chemical corrosion occurred. As a result, it was found that the change in electrical resistance value due to freeze-thawing was not as large as 1%, and chemical corrosion occurred. It was found that the change in electrical resistance value of the tested specimen increased by about 10%.

  • PDF