• 제목/요약/키워드: Electrical properties of graphene

검색결과 223건 처리시간 0.03초

GQD layers for Energy-Down-shift layer on silicon solar cells by kinetic spraying method

  • 이경동;박명진;김도연;김수민;강병준;김성탁;김현호;이해석;강윤묵;윤석구;홍병희;김동환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.422.1-422.1
    • /
    • 2016
  • Graphene quantum dots (GQDs), a new kind of carbon-based photo luminescent nanomaterial from chemically modified graphene oxide (CMGO) or chemically modified graphene (CMG), has attracted extensive research attention in the last few years due to its outstanding chemical, optical and electrical properties. To further extended its potential applications as optoelectronic devices, solar cells, bio and bio-sensors and so on, intensive research efforts have been devoted to the CMG. However, the CMG, a suspension of aqueous, have problematic since they are prone to agglomeration after drying a solvent. In this study, we synthesized the GQDs from graphite and deposited on silicon substrate by kinetic spray. The photo luminescent properties of deposited GQD films were analyzed and compared with initial GQDs suspension. In addition, its carbon properties were investigated with GQDs solution properties. The properties of deposited GQD films by kinetic spray were similar to that of the GQDs suspension in water. We could provide a pathway for silicon-based silicon based device applications. Finally, the well-adjusted GQD films with photo luminescence effects will show Energy-Down-Shift layer effects on silicon solar cells. The GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density (Jsc) was enhanced by about 2.94 % (0.9 mA/cm2) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  • PDF

탄소필러와 에스테르계 바인더가 전도성 페이스트의 반응성 및 PET 필름과의 접착특성에 미치는 영향 (Effect of Carbon Filler and Ester Type Binder on the Reactivity and Adhesive Properties with PET Film of Conductive Paste)

  • 심창업;구효선;김연철
    • 공업화학
    • /
    • 제33권4호
    • /
    • pp.381-385
    • /
    • 2022
  • 유해화학물질의 감지 센서 개발을 위해 기재 필름과 전도성 페이스트의 접착 내구성 확보가 매우 중요하다. 본 연구에서는 폴리에틸렌테레프탈레이트(polyethylene terephthalate, PET) 필름에 폴리아닐린/그래핀나노플레이트(graphene nano plate, GNP) 페이스트를 코팅하여 접착 특성을 평가한 결과 cross cut 0B 또는 1B 등급으로 센서 적용에 문제가 있어 에스테르계 바인더를 이용하여 접착 특성 개선 연구를 수행하였다. 에스테르계 바인더가 10 wt% 이상 첨가되면 센서 적용이 가능한 cross cut 등급이 3B 이상을 나타내었다. 바인더의 과량 첨가는 전도성 페이스트의 전기적 특성에 영향을 줄 수 있으며 실제로 황산에 대한 반응성이 감소함을 확인하였다. 전기적 특성 개선을 위해 카본블랙(carbon black, CB) 함량 변화 시험을 수행하였고 CB 2 wt%에서 최적의 전기적 특성을 보임을 확인하였다.

암모니아수 처리된 그래핀 옥사이드의 전자파 차폐효율 특성 (Electromagnetic Interference Shielding Efficiency Characteristics of Ammonia-treated Graphene Oxide)

  • 박미선;윤국진;이영석
    • 공업화학
    • /
    • 제25권6호
    • /
    • pp.613-618
    • /
    • 2014
  • 본 연구에서는 그래핀 옥사이드의 전기적 특성을 향상시키고자 그래핀 옥사이드에 암모니아수 처리를 이용하여 아민화가 이루어진 그래핀 옥사이드를 제조하였다. 그리고, 아민화된 그래핀 옥사이드의 전기적 특성을 평가하고자 이를 필름으로 제조하여 전자파차폐효율을 측정하였다. 암모니아수 처리 농도가 증가함에 따라 그래핀 옥사이드 표면의 질소 관능기가 증가함을 XPS에 의하여 확인하였으며, 또한, 전자파차폐효율 측정 결과 암모니아수 처리된 그래핀 옥사이드의 전자파차폐효율 특성이 우수함을 확인하였다. 21% 암모니아수 농도로 처리한 그래핀 옥사이드는 2950 MHz 이상에서 -5 dB 이상의 전자파차폐효율을 보여주었으며, 이러한 실험 결과들은 질소 관능기가 그래핀 옥사이드 내에 전자전달을 용이하게 하여 흡수되는 전자파 양을 증가시켰기 때문으로 사료된다.

Study of complex electrodeposited thin film with multi-layer graphene-coated metal nanoparticles

  • Cho, Young-Lae;Lee, Jung-woo;Park, Chan;Song, Young-il;Suh, Su-Jeong
    • Carbon letters
    • /
    • 제21권
    • /
    • pp.68-73
    • /
    • 2017
  • We have demonstrated the production of thin films containing multilayer graphene-coated copper nanoparticles (MGCNs) by a commercial electrodeposition method. The MGCNs were produced by electrical wire explosion, an easily applied technique for creating hybrid metal nanoparticles. The nanoparticles had average diameters of 10-120 nm and quasi-spherical morphologies. We made a complex-electrodeposited copper thin film (CETF) with a thickness of $4.8{\mu}m$ by adding 300 ppm MGCNs to the electrolyte solution and performing electrodeposition. We measured the electric properties and performed corrosion testing of the CETF. Raman spectroscopy was used to measure the bonding characteristics and estimate the number of layers in the graphene films. The resistivity of the bare-electrodeposited copper thin film (BETF) was $2.092{\times}10^{-6}{\Omega}{\cdot}cm$, and the resistivity of the CETF after the addition of 300 ppm MGCNs was decreased by 2% to ${\sim}2.049{\times}10^{-6}{\Omega}{\cdot}cm$. The corrosion resistance of the BETF was $9.306{\Omega}$, while that of the CETF was increased to 20.04 Ω. Therefore, the CETF with MGCNs can be used in interconnection circuits for printed circuit boards or semiconductor devices on the basis of its low resistivity and high corrosion resistance.

Development of Cobalt Sulfide-graphene Composite for Supercapacitor Applications

  • Jana, Milan;Samanta, Pranab;Murmu, Naresh Chandra;Kim, Nam Hoon;Kuila, Tapas;Lee, Joong Hee
    • Composites Research
    • /
    • 제29권4호
    • /
    • pp.167-172
    • /
    • 2016
  • $Co_9S_8/reduced$ graphene (CSRG) has been prepared by a facile two step hydrothermal method and used as a supercapacitor electrode material. It is anticipated that the $Co_9S_8$ and reduced graphene oxide (RGO) would serve as a spacer material to each other to stop the agglomeration and simultaneous contribution of electrical double layer capacitance (RGO) and pseudocapacitance ($Co_9S_8$) would provide high electrochemical properties. The chemical analysis has been done by Fourier transform infrared spectroscopy and the morphology is characterised by field emission scanning electron microscopy. CSRG shows a high electrical conductivity of $98S\;m^{-1}$. The symmetric supercapacitor shows a specific capacitance of ${\sim}728F\;g^{-1}$ with a current density of $2A\;g^{-1}$. CSRG also showed an energy density of $25.2Wh\;kg^{-1}$ with a power density of $1000W\;kg^{-1}$.

PVA의 첨가에 의한 CVD 그래핀상 PEDOT : PSS의 코팅성 향상 (Improved Coating of PEDOT : PSS onto CVD Graphene by the Addition of PVA)

  • 박민의;신채연;김혜지;김승연;최영주;정대원
    • 공업화학
    • /
    • 제29권6호
    • /
    • pp.734-739
    • /
    • 2018
  • PVA를 PEDOT : PSS에 첨가해줌으로써 CVD 그래핀 상에 효과적으로 코팅할 수 있었다. PVA의 검화도 및 분자량에 따른 코팅성 및 필름의 전기적 특성을 검토한 결과, DS는 89%, 분자량은 $100,000gmol^{-1}$ 이하인 것이 바람직하였다. 또한, PVA의 첨가량은 PEDOT : PSS의 고형분 대비 5%가 최적으로 나타났다. 이와 같은 PVA를 사용하여 PEDOT : PSS를 CVD 그래핀 위에 코팅한 필름은 CVD 그래핀 필름에 비해서 표면조도, 부착성, 굴곡 내구성 및 고온($160^{\circ}C$)에서의 저항 안정성 등이 현저하게 개선되는 것으로 나타났다.

Influence of Processing on Morphology, Electrical Conductivity and Flexural Properties of Exfoliated Graphite Nanoplatelets-Polyamide Nanocomposites

  • Liu, Wanjun;Do, In-Hwan;Fukushima, Hiroyuki;Drzal, Lawrence T.
    • Carbon letters
    • /
    • 제11권4호
    • /
    • pp.279-284
    • /
    • 2010
  • Graphene is one of the most promising materials for many applications. It can be used in a variety of applications not only as a reinforcement material for polymer to obtain a combination of desirable mechanical, electrical, thermal, and barrier properties in the resulting nanocomposite but also as a component in energy storage, fuel cells, solar cells, sensors, and batteries. Recent research at Michigan State University has shown that it is possible to exfoliate natural graphite into graphite nanoplatelets composed entirely of stacks of graphene. The size of the platelets can be controlled from less than 10 nm in thickness and diameters of any size from sub-micron to 15 microns or greater. In this study we have investigated the influence of melt compounding processing on the physical properties of a polyamide 6 (PA6) nanocomposite reinforced with exfoliated graphite nanoplatelets (xGnP). The morphology, electrical conductivity, and mechanical properties of xGnP-PA6 nanocomposite were characterized with electrical microscopy, X-ray diffraction, AC impedance, and mechanical properties. It was found that counter rotation (CNR) twins crew processed xGnP/PA6 nanocomposite had similar mechanical properties with co-rotation (CoR) twin screw processed or with CoR conducted with a screw design modified for nanoparticles (MCoR). Microscopy showed that the CNR processed nanocomposite had better xGnP dispersion than the (CoR) twin screw processed and modified screw (MCoR) processed ones. It was also found that the CNR processed nanocomposite at a given xGnP content showed the lowest graphite X-ray diffraction peak at $26.5^{\circ}$ indicating better xGnP dispersion in the nanocomposite. In addition, it was also found that the electrical conductivity of the CNR processed 12 wt.% xGnP-PA6 nanocomposite is more than ten times higher than the CoR and MCoR processed ones. These results indicate that better dispersion of an xGnP-PA6 nanocomposite is attainable in CNR twins crew processing than conventional CoR processing.

폴리페닐렌설파이드(PPS) 복합소재 제조 및 응용 (Fabrication and Applications of Polyphenylene Sulfide (PPS) Composites: A Short Review)

  • 최민식;이정록;류성우;구본철
    • Composites Research
    • /
    • 제33권3호
    • /
    • pp.91-100
    • /
    • 2020
  • 폴리페닐렌설파이드(PPS)는 반결정성 엔지니어링 열가소성 수지로 뛰어난 열안정성, 우수한 기계적 강도, 고유의 난연성 및 내화학성, 전기적 특성을 갖고 있다. 이러한 우수한 특성으로 인해 PPS는 복합체의 매트릭스로 선호되고 있다. PPS의 기계적 물성을 향상시키며 기능성 부여를 위해 탄소섬유나 유리섬유와 같은 필러를 이용한 복합화 연구가 진행되어 오고 있다. 본 총설 논문에서는 PPS와 탄소나노튜브, 그래핀, 탄소섬유, 유리섬유 등과의 복합체 제조 및 응용에 대한 연구를 소개하고자 한다.

고분자전해질연료전지를 위한 그래핀 기반 PtM 촉매들의 산소환원반응성 연구 (A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized on Graphene for Proton Exchange Membrane Fuel Cell)

  • 양종원;최장군;조한익;박종진;권용재
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.378-385
    • /
    • 2014
  • In this research, we investigate electrical performance and electrochemical properties of graphene supported Pt (Pt/G) and PtM (M = Ni and Y) alloy catalysts (PtM/Gs) that are synthesized by modified polyol method. With the PtM/Gs that are adopted for oxygen reduction reaction (ORR) as cathode of proton exchange membrane fuel cells (PEMFCs), their catalytic activity and ORR performance and electrical performance are estimated and compared with one another. Their particle size, particle distribution and electrochemically active surface (EAS) area are measured by TEM and cyclic voltammetry (CV), respectively. On the other hand, regarding ORR activity and electrical performance of the catalysts, (i) linear sweeping voltammetry by rotating disk electrode and rotating ring-disk electrode and (ii) PEMFC single cell tests are used. The TEM and CV measurements demonstrate particle size and EAS of PtM/Gs are compatible with those of Pt/G. In case of PtNi/G, its half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production % are excellent. Based on data obtained by half-cell test, when PEMFC singlecell tests are carried out, current density measured at 0.6V and maximum power density of the PEMFC single cell employing PtNi/G are better than those employing Pt/G. Conclusively, PtNi/Gs synthesized by modified polyol shows better ORR catalytic activity and PEMFC performance than other catalysts.

Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Khan, Imran
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.283-291
    • /
    • 2020
  • The present paper researches post-buckling behaviors of geometrically imperfect concrete beam resting on elastic foundation reinforced with graphene oxide powders (GOPs) based on finite element method (FEM). Distribution of GOPs are considered as uniform and linearly graded through the thickness. Geometric imperfection is considered as first buckling mode shape of the beam, the GOP reinforced beam is rested in initial position. The material properties of GOP reinforced composite have been calculated via employment of Halpin-Tsai micromechanical scheme. The provided refined beam element verifies the shear deformation impacts needless of any shear correction coefficient. The post-buckling load-deflections relations have been calculated via solving the governing equations having cubic non-linearity implementing FEM. Obtained findings indicate the importance of GOP distributions, GOP weight fraction, matrix material, geometric imperfection, shear deformation and foundation parameters on nonlinear buckling behavior of GOP reinforced beam.