• Title/Summary/Keyword: Electrical power subsystem

Search Result 79, Processing Time 0.021 seconds

ELECTRICAL INTERFACES COMPATIBILITY ANALYSIS FOR THE COMS AOCS

  • Koo, Jae-Chun;Kim, Eui-Chan
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.183-186
    • /
    • 2007
  • The aim of this analysis is to verify the electrical compatibility of the interfaces which exist between COMS(Communication, Ocean and Meteorological Satellite) AOCS(Attitude Orbit Control Subsystem) equipments and external equipments. For each interface, this study checked the compatibility between equipments for the power links, commands, digital telemetry, analog telemetry and failure condition. In addition with this interface compatibility verification, this study outputs the electrical and manufacturing constraints to be applied at harness level.

  • PDF

Dynamic Analysis and Controller Design for Standalone Operation of Photovoltaic Power Conditioners with Energy Storage

  • Park, Sun-Jae;Shin, Jong-Hyun;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2004-2012
    • /
    • 2014
  • Energy storage devices are necessary to obtain stable utilization of renewable energy sources. When black-out occurs, distributed renewable power sources with energy storage devices can operate under standalone mode as uninterruptable power supply. This paper proposes a dynamic response analysis with small-signal modeling for the standalone operation of a photovoltaic power generation system that includes a bidirectional charger/discharger with a battery. Furthermore, it proposes a DC-link voltage controller design of the entire power conditioning system, using the storage current under standalone operation. The purpose of this controller is to guarantee the stable operation of the renewable source and the storage subsystem, with the power conversion of a very efficient bypass-type PCS. This paper presents the operating principle and design guidelines of the proposed scheme, along with performance analysis and simulation. Finally, a hardware prototype of 1-kW power conditioning system with an energy storage device is implemented, for experimental verification of the proposed converter system.

Modeling, Simulation and Fault Diagnosis of IPFC using PEMFC for High Power Applications

  • Darly, S.S.;Vanaja Ranjan, P.;Justus Rabi, B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.760-765
    • /
    • 2013
  • An Interline Power Flow Controller (IPFC) is a converter based controller which compensates and balance the power flow among multi-lines within the same corridor of the multi-line subsystem. The Interline Power Flow Controller consists of a voltage source converter based Flexible AC Transmission System (FACTS) controller for series compensation. The reactive voltage injected by individual Voltage Source Converter (VSC) can be controlled to regulate active power flow in the respective line in which one VSC regulates the DC voltage, the other one controls the reactive power flows in the lines by injecting series active voltage. In this paper, a circuit model for IPFC is developed and simulation of interline power flow controller is done using the proposed circuit model. Simulation is done using MATLAB Simulink and PSPICE. The results obtained by MATLAB are compared with the results obtained by PSPICE and compared with theoretical values.

Safety Analysis and Safety Measures of 22900/1200V Oil Immersed Transformer at Power Supply System (전철 급전시스템의 22900/1200V 유입변압기 안전성 분석)

  • Lee, Jong-Su;Lee, Jongwoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1335-1342
    • /
    • 2013
  • Subway is electrified railway system nowadays, in which liquid dielectric transformers have been widely used, though mold type transformers are replacing it. The transformers supplies large electric power and have innate hazards causing accidents under operation. A number of researcher have carried out on failures of it and have oriented to identify transformer's failure causes and how to maintain it healthy state. The transformer failures can cause serious accidents which can provoke economic loss and leads persons to kill. In this paper, we carried out a safety activity to reveal hazards and to estimate risk of subway liquid dielectric transformers using FMEA, HAZOP and What-if methods. In case of installing safety devices in oil immersed transformer, we tried to evaluate an effect on a subsystem's failure rate. We proposed how to design subsystem failure rate and safety device failure rates.

Development of Low-Cost and Low-Power Picosatellite Electrical Power Subsystem (저비용/저전력의 초소형위성 전력계의 개발)

  • Park, Je-Hong;Kim, Young-Hyun;Moon, Byoung-Young;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.105-116
    • /
    • 2004
  • The design of pico-/nano-satellites is particularly challenging due to constraints in mass, volume, power, and surface area. An efficient low-cost picosatellite HAUSAT-1 Electrical Power Subsystem (EPS) is developed to supply the power for various loads during the full mission life. This paper addresses design and analysis results of solar arrays, batteries, power conditioning and distribution units. The component selection, manufacturing and test results are presented by considering appropriate development cost and performance. The simulation results of power system are also illustrated, according to operational modes, through energy balance analysis. Finally, the EFS design feasibility is verified by comparing analysis results with functional and environmental test results at the system and component levels, respectively.

Multiple Battery Module for the Low-Earth-Orbit Spacecraft Power system

  • Cho Yoon-Jay;Cho B. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.84-88
    • /
    • 2001
  • In an effort to develop more reliable and cost-effective satellite power system, a multiple-battery subsystem operating in parallel become a viable solution. The idea can further be extended to the parallel-able standardized battery module concept that offers many attractive features in configuring a spacecraft power system. In this paper, Multiple Battery Modules employing the charge control scheme are proposed. In addition to the conventional voltage mode controller, the charge control scheme internally regulates and controls the battery current, resulting in the identical current distribution and balanced battery charge.

  • PDF

Decentralized Neural Network-based Excitation Control of Large-scale Power Systems

  • Liu, Wenxin;Sarangapani, Jagannathan;Venayagamoorthy, Ganesh K.;Liu, Li;Wunsch II, Donald C.;Crow, Mariesa L.;Cartes, David A.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.526-538
    • /
    • 2007
  • This paper presents a neural network based decentralized excitation controller design for large-scale power systems. The proposed controller design considers not only the dynamics of generators but also the algebraic constraints of the power flow equations. The control signals are calculated using only local signals. The transient stability and the coordination of the subsystem control activities are guaranteed through rigorous stability analysis. Neural networks in the controller design are used to approximate the unknown/imprecise dynamics of the local power system and the interconnections. All signals in the closed loop system are guaranteed to be uniformly ultimately bounded. To evaluate its performance, the proposed controller design is compared with conventional controllers optimized using particle swarm optimization. Simulations with a three-machine power system under different disturbances demonstrate the effectiveness of the proposed controller design.

A Connectionist Expert System for Fault Diagnosis of Power System (전력계통 사고구간 판정을 위한 Commectionist Expert System)

  • 김광호;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.331-338
    • /
    • 1992
  • The application of Connectionist expert system using neural network to fault diagnosis of power system is presented and compared with rule-based expert system. Also, the merits of Connectionist model using neural network is presented. In this paper, the neural network for fault diagnosis is hierarchically composed by 3 neural network classes. The whole power system is divided into subsystems, the neural networks (Class II) which take charge of each subsystem and the neural network (Class III) which connects subsystems are composed. Every section of power system is classified into one of the typical sections which can be applied with same diagnosis rules, as line-section, bus-section, transformer-section. For each typical section, only one neural network (Class I) is composed. As the proposed model has hierarchical structure, the great reduction of learning structure is achieved. With parallel distributed processing, we show the possibility of on-line fault diagnosis.

  • PDF

Standard Model Development for EPS Simulator of a Satellite (인공위성 전력계 시뮬레이터의 표준화 모델 개발)

  • Jung, Ok-Chul;Lee, Sang-Uk;Kim, Jae-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.360-362
    • /
    • 2005
  • In this paper, standard model for electrical power subsystem of a satellite simulator is presented and analyzed. The main purpose of standard model simulator is to promote platform independency, interoperability and reusability of simulation models. And, EPS simulator prototype model is proposed using the SMP2 standard.

  • PDF

Development of SCADA Simulator for Power System Operator (기존 SCADA 시스템의 훈련용 시뮬레이터 개발)

  • Choe, Seong-Su;Woo, Hee-Gon;Suh, Joong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.522-524
    • /
    • 1993
  • This paper discusses the training simulator designed to improve the skills of operators who handle the SCADA System of KEPCO (Korea Electric Power Co. ). The system is composed of the simulation subsystem and database, and implemented on the 380-based P. C. It is 1 inked to existing SCADA system (HARRIS and TADCOM) to work realistically for the situation of accidents and corresponding actions.

  • PDF