• Title/Summary/Keyword: Electrical machines

Search Result 947, Processing Time 0.031 seconds

Sensorless Control of the Synchronous Reluctance Machine

  • Kilthau, A.;Pacas, J.M.
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • The paper deals with the control of the synchronous reluctance machine without position senser. A method for the computation of the transformation angle out of terminal voltages and currents is presented. The injection of test signals allows operation at zero speed. Fundamental for this control scheme is the angle estimation method over the whole operating range including field-weakening is discussed in detail. The implementation of the angle estimation method in a rotor-oriented control scheme and practical results are demonstrated.

Simulation Study of a New Approach for Field Weakening Control of PMSM

  • Elsayed, Mohamed Taha;Mahgoub, Osama Ahmed;Zaid, Sherif Ahmed
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.136-144
    • /
    • 2012
  • In this paper, the different techniques for the field weakening, also known as constant power speed range (CPSR) operation, for permanent magnet synchronous motor (PMSM) will be introduced and analysed. Field weakening of PMSM, can be done using either vector control (VC) or conventional phase in advance (CPA). Implementation of these techniques depending on some features and constrains. Most of these features and constrains came from the motor parameters. One of these constrains is the motor inductance which determining whether the motor can be driven in the CPSR or not. A new approach for the field weakening will be discussed and to be verified to overcome this constrain. The new approach will be verified through both techniques VC and CPA.

Adaptive States Feedback Control of Unknown Dynamics Systems Using Support Vector Machines

  • Wang, Fa-Guang;Kim, Min-Chan;Park, Seung-Kyu;Kwak, Gun-Pyong
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.310-314
    • /
    • 2008
  • This paper proposes a very novel method which makes it possible that state feedback controller can be designed for unknown dynamic system with measurable states. This novel method uses the support vector machines (SVM) with its function approximation property. It works together with RLS (Recursive least-squares) algorithm. The RLS algorithm is used for the identification of input-output relationship. A virtual state space representation is derived from the relationship and the SVM makes the relationship between actual states and virtual states. A state feedback controller can be designed based on the virtual system and the SVM makes the controller with actual states. The results of this paper can give many opportunities that the state feedback control can be applied for unknown dynamic systems.

Diagnosis of rotating machines by utilizing a back propagation neural net

  • Hyun, Byung-Geun;Lee, Yoo;Nam, Kwang-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.522-526
    • /
    • 1994
  • There are great needs for checking machine operation status precisely in the iron and steel plants. Rotating machines such as pumps, compressors, and motors are the most important objects in the plant maintenance. In this paper back-propagation neural network is utilized in diagnosing rotating machines. Like the finger print or the voice print of human, the abnormal vibrations due to axis misalignment, shaft bending, rotor unbalance, bolt loosening, and faults in gear and bearing have their own spectra. Like the pattern recognition technique, characteristic. feature vectors are obtained from the power spectra of vibration signals. Then we apply the characteristic feature vectors to a back propagation neural net for the weight training and pattern recognition.

  • PDF

Predictions of Short-Circuit Characteristics of Rotor Windings in a Generator using Electromagnetic Analysis (전자장해석을 통한 발전기 회전자권선 단락특성 예측)

  • Kim, Dong-Hun;Song, Myung-Kon;Park, Jung-Shin;Lee, Dong-Young
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.11
    • /
    • pp.572-576
    • /
    • 2006
  • As the increasing of capacity and technology of power facilities, rotating machines such as turbine generators and water turbines are getting higher at capacity but smaller in size. Thus the monitoring and diagnosis of generators for fault detection and protection has attracted intensive interest. Most of electrical faults of rotating machines appear in their windings. In case of an after-fault in high capacity rotating machines, the recovering cost is usually very expensive and additional time is necessary for returning in a normal situation. In this paper, the magnetic flux patterns in air-gap of a generator under various fault states as well as a normal state are simulated by a conventional FEM tool. These results are successfully applied to detection and diagnosis of the short-circuit condition in rotor windings of a high capacity generator.

Effect of Particles Size on Magnetic Performance of Dielectromagnetics

  • Gaworska, Dominika;Hodgson, Simon N.B.;Koniarek, Jaroslaw;Weglinski, Bogumil
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.792-793
    • /
    • 2006
  • In the paper, the influence of different particle size $D:D>125{\mu}m$, $D<50{\mu}m$ and between on magnetic properties of a standardized dielectromagnetic is presented. The tests were taken at frequencies of between 50Hz, and 500Hz. Presented in the paper results provide important materials property data to allow the selection of the most appropriate dielectromagnetic particle size for different applications.

  • PDF

Experimental Works and Power Loss Calculations of Surface-Mounted Permanent Magnet Machines

  • Choi, Jang-Young;Ko, Kyoung-Jin;Jang, Seok-Myeong
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2011
  • Surface-mounted permanent magnet (PM) machines were examined experimentally and theoretically, through power loss measurements and calculations. Windage, friction and copper losses were calculated using simple analytical equations and finite element (FE) analyses. Stator core losses were calculated by determining core loss coefficients through curve-fitting and magnetic behavior analysis through non-linear FE calculations. Rotor eddy current losses were calculated using FE analyses that considered the time harmonics of phase current according to load. Core, windage and friction open-circuit losses and copper loss were determined experimentally to test the validity of the analyses.

Drives and Motion Control Teaching based on Distance Laboratory and Remote Experiments

  • Vogelsberger, Markus A.;Macheiner, Peter;Bauer, Pavol;Wolb, Thomas M.
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.579-586
    • /
    • 2010
  • This paper presents the organisation and the technical structure of a remote controlled laboratory in the field of high dynamic drives and motion control. It is part of the PEMCWebLab project with the goal of providing students with practical experience on real systems in the field of power electronics and drives. The whole project is based on clear targets and leading ideas. A set of experiments can be remotely performed on a real system to stepwise identify a two axes positioning system and to design different cascaded control loops. Each single experiment is defined by its goals, the content of how to achieve them, and a verification of the results as well as the achieved learning outcomes. After a short description of the PEMCWebLab project, the structure of the remote control is presented together with the hardware applied. One important point is error handling as real machines and power electronics are applied. Finally, a selection of experiments is presented to show the graphical user interface and the sequence of the laboratory.

Fast Component Placement with Optimized Long-Stroke Passive Gravity Compensation Integrated in a Cylindrical/Tubular PM Actuator

  • Paulides, J.J.H.;Encica, L.;Meessen, K.J.;Lomonova, E.A.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.275-282
    • /
    • 2013
  • Applications such as vibration isolation, gravity compensation, pick-and-place machines, etc., would benefit from (long-stroke) cylindrical/tubular permanent magnet (PM) actuators with integrated passive gravity compensation to minimize the power consumption. As an example, in component placing (pick-and-place) machines on printed circuit boards, passive devices allow the powerless counteraction of translator including nozzles or tooling bits. In these applications, an increasing demand is arising for high-speed actuation with high precision and bandwidth capability mainly due to the placement head being at the foundation of the motion chain, hence, a large mass of this device will result in high force/power requirements for the driving mechanism (i.e. an H-bridge with three linear permanent magnet motors placed in an H-configuration). This paper investigates a tubular actuator topology combined with passive gravity compensation. These two functionalities are separately introduced, where the combination is verified using comprehensive three dimensional (3D) finite element analyses.

Measurement of Two Dimensional Magnetic Properties of Electrical Steel Sheets under Rotating Magnetic Fields (전기강판의 회전자계 하에서의 2차원 자계특성 측정)

  • Eum, Young-Hwan;Hong, Sun-Ki;Shin, Pan-Seok;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.617-622
    • /
    • 2006
  • It is necessary to measure precisely the magnetic characteristics of electrical steel sheets under rotating magnetic fields, to obtain an accurate numerical performance analysis of electric machines made of electrical steel sheets. In this paper, the two dimensional magnetic characteristics of an electrical steel sheet are measured and explained under rotating magnetic fields using a two-axes-excitation type single sheet tester (SST). Through experiments, the magnetic properties, under rotating magnetic fields, of a non-oriented and grain oriented electrical steel sheet were measured respectively. In addition, the iron losses due to not only the alternating magnetic fields, but also rotating magnetic fields were measured. These experimentally measured results can evidently be applied to the analysis of iron losses in electrical machines.