• 제목/요약/키워드: Electrical explosion of wire method

검색결과 22건 처리시간 0.017초

Fabrication of Core-Shell Structured Ni-Based Alloy Nanopowder by Electrical Wire Explosion Method

  • Lee, A-Young;Lee, Gwang-Yeob;Oh, Hye-Ryeong;Kim, Hyeon-Ah;Kim, Song-Yi;Lee, Min-Ha
    • 한국분말재료학회지
    • /
    • 제23권6호
    • /
    • pp.409-413
    • /
    • 2016
  • Electrical wire explosion in liquid media is a promising method for producing metallic nanopowders. It is possible to obtain high-purity metallic nanoparticles and uniform-sized nanopowder with excellent dispersion stability using this electrical wire explosion method. In this study, Ni-Fe alloy nanopowders with core-shell structures are fabricated via the electrical explosion of Ni-Fe alloy wires 0.1 mm in diameter and 20 mm in length in de-ionized water. The size and shape of the powders are investigated by field-emission scanning electron microscopy, transmission electron microscopy, and laser particle size analysis. Phase analysis and grain size determination are conducted by X-ray diffraction. The result indicate that a core-shell structured Ni-Fe nanopowder is synthesized with an average particle size of approximately 28 nm, and nanosized Ni core particles are encapsulated by an Fe nanolayer.

Spark Plasma Sintering of the Ni-graphite Composite Powder Prepared by Electrical Explosion of Wire in Liquid and Its Properties

  • Thuyet-Nguyen, Minh;Kim, Jin-Chun
    • 한국분말재료학회지
    • /
    • 제27권1호
    • /
    • pp.14-24
    • /
    • 2020
  • In this work, the electrical explosion of wire in liquid and subsequent spark plasma sintering (SPS) was introduced for the fabrication of Ni-graphite nanocomposites. The fabricated composite exhibited good enhancements in mechanical properties, such as yield strength and hardness, but reduced the ductility in comparison with that of nickel. The as-synthesized Ni-graphite (5 vol.% graphite) nanocomposite exhibited a compressive yield strength of 275 MPa (about 1.6 times of SPS-processed monolithic nickel ~170 MPa) and elongation to failure ~22%. The hardness of Ni-graphite composite had a value of 135.46 HV, which is about 1.3 times higher than that of pure SPS-processed Ni (105.675 HV). In terms of processing, this work demonstrated that this processing route is a novel, simple, and low-cost method for the synthesis of nickel-graphite composites.

Fabrication and Characterization of Immiscible Fe-Cu Alloys using Electrical Explosion of Wire in Liquid

  • Phuc, Chu Dac;Thuyet, Nguyen Minh;Kim, Jin-Chun
    • 한국분말재료학회지
    • /
    • 제27권6호
    • /
    • pp.449-457
    • /
    • 2020
  • Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.

전기도금법과 전기선폭발법을 이용한 Al-Cu 합금 나노분말제조 (The Fabrication of Al-Cu Alloy Nano Powders by a New Method Combining Electrodeposition and Electrical Wire Explosion)

  • 박제신;서창열;장한권;이재천;김원백
    • 한국분말재료학회지
    • /
    • 제13권3호
    • /
    • pp.187-191
    • /
    • 2006
  • Al-Cu alloy nano powders were produced by the electrical explosion of Cu-plated Al wires. The composition and phase of the alloy could be controlled by varying the thickness of Cu deposit on Al wire. When the Cu layer was thin, Al solid solution and $CuAl_2$ were the major phases. As the Cu layer becomes thicker, Al diminished while $Al_4Cu_9$ phase prevailed instead. The average particle size of Al-Cu nano powders became slightly smaller from 63 nm to 44 nm as Cu layer becomes thicker. The oxygen content of Al-Cu powder decreased linearly with Cu content. It is well demonstrated that the electrodeposition combined with wire explosion could be simple and economical means to prepare variety of alloy and intermetallic nano powders.

Fabrication and Mechanical Characteristics of Bulk Nickel/Carbon Nanotube Nanocomposites via the Electrical Explosion of Wire in Liquid and Spark Plasma Sintering Method

  • Minh, Thuyet-Nguyen;Hong, Hai-Nguyen;Kim, Won Joo;Kim, Ho Yoon;Kim, Jin-Chun
    • 한국분말재료학회지
    • /
    • 제23권3호
    • /
    • pp.213-220
    • /
    • 2016
  • In this study, bulk nickel-carbon nanotube (CNT) nanocomposites are synthesized by a novel method which includes a combination of ultrasonication, electrical explosion of wire in liquid and spark plasma sintering. The mechanical characteristics of the bulk Ni-CNT composites synthesized with CNT contents of 0.7, 1, 3 and 5 wt.% are investigated. X-ray diffraction, optical microscopy and field emission scanning electron microscopy techniques are used to observe the different phases, morphologies and structures of the composite powders as well as the sintered samples. The obtained results reveal that the as-synthesized composite exhibits substantial enhancement in the microhardness and values more than 140 HV are observed. However an empirical reinforcement limit of 3 wt.% is determined for the CNT content, beyond which, there is no significant improvement in the mechanical properties.

전기선폭발법으로 제조된 텅스텐 분말의 산소 조성이 방전플라즈마소결 거동에 미치는 영향 (Effect of Oxygen Content in the Tungsten Powder Fabricated by Electrical Explosion of Wire Method on the Behavior of Spark-Plasma Sintering)

  • 김철희;이성;김병기;김지순
    • 한국분말재료학회지
    • /
    • 제21권6호
    • /
    • pp.447-453
    • /
    • 2014
  • Effect of oxygen content in the ultrafine tungsten powder fabricated by electrical explosion of wire method on the behvior of spark plasma sintering was investigated. The initial oxygen content of 6.5 wt% of as-fabricated tungsten powder was reduced to 2.3 and 0.7 wt% for the powders which were reduction-treated at $400^{\circ}C$ for 2 hour and at $500^{\circ}C$ for 1h in hydrogen atmosphere, respectively. The reduction-treated tungsten powders were spark-plasma sintered at $1200-1600^{\circ}C$ for 100-3600 sec. with applied pressure of 50 MPa under vacuum of 0.133 Pa. Maximun sindered density of 97% relative density was obtained under the condition of $1600^{\circ}C$ for 1h from the tungsten powder with 0.7 wt% oxygen. Sintering activation energy of $95.85kJ/mol^{-1}$ was obtained, which is remarkably smaller than the reported ones of $380{\sim}460kJ/mol^{-1}$ for pressureless sintering of micron-scale tungsten powders.

유체 내 전기선폭발법에 의한 은 나노입자 유체의 제조 및 특성 (Production and Properties of Ag Metallic Nanoparticle Fluid by Electrical Explosion of Wire in Liquid)

  • 박은주;;김지순;권영순;김진천;최혜선;정용훈
    • 한국분말재료학회지
    • /
    • 제16권3호
    • /
    • pp.217-222
    • /
    • 2009
  • This paper presents a novel single-step method to prepare the Ag nanometallic particle dispersed fluid (nanofluid) by electrical explosion of wire in liquid, deionized water (DI water). X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) were used to investigate the characteristics of the Ag nanofluids. Zeta potential was also used to measure the dispersion properties of the as-prepared Ag nanofluid. Pure Ag phase was detected in the nanofluids using water. FE-SEM analysis shows that the size of the particles formed in DI water was about 88 nm and Zeta potential value was about -43.68 without any physical and chemical treatments. Thermal conductivity of the as-prepared Ag particle dispersed nanofluid shows much higher value than that of pure DI water.

액중 전기선 폭발법을 이용한 비정질 탄소가 코팅된 주석 나노분말의 제조 및 전기화학적 특성 (Fabrication of Carbon-coated Tin Nano-powders by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties)

  • 김유영;송주석;조권구
    • 한국분말재료학회지
    • /
    • 제23권4호
    • /
    • pp.317-324
    • /
    • 2016
  • Tin is one of the most promising anode materials for next-generation lithium-ion batteries with a high energy density. However, the commercialization of tin-based anodes is still hindered due to the large volume change (over 260%) upon lithiation/delithiation cycling. To solve the problem, many efforts have been focused on enhancing structural stability of tin particles in electrodes. In this work, we synthesize tin nano-powders with an amorphous carbon layer on the surface and surroundings of the powder by electrical wire explosion in alcohol-based liquid media at room temperature. The morphology and microstructures of the powders are characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. The electrochemical properties of the powder for use as an anode material for lithium-ion battery are evaluated by cyclic voltammetry and a galvanometric discharge-charge method. It is shown that the carbon-coated tin nano-powders prepared in hexanol media exhibit a high initial charge specific capacity of 902 mAh/g and a high capacity retention of 89% after 50 cycles.

액중 전기선 폭발법을 이용한 Fe3O4/Fe/그래핀 나노복합체 분말의 제조 및 전기화학적 특성 (Fabrication of Fe3O4/Fe/Graphene nanocomposite powder by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties)

  • 김유영;최지습;이회진;조권구
    • 한국분말재료학회지
    • /
    • 제24권4호
    • /
    • pp.308-314
    • /
    • 2017
  • $Fe_3O_4$/Fe/graphene nanocomposite powder is synthesized by electrical wire explosion of Fe wire and dispersed graphene in deionized water at room temperature. The structural and electrochemical characteristics of the powder are characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, field-emission transmission electron microscopy, cyclic voltammetry, and galvanometric discharge-charge method. For comparison, $Fe_3O_4$/Fe nanocomposites are fabricated under the same conditions. The $Fe_3O_4$/Fe nanocomposite particles, around 15-30 nm in size, are highly encapsulated in a graphene matrix. The $Fe_3O_4$/Fe/graphene nanocomposite powder exhibits a high initial charge specific capacity of 878 mA/g and a high capacity retention of 91% (798 mA/g) after 50 cycles. The good electrochemical performance of the $Fe_3O_4$/Fe/graphene nanocomposite powder is clearly established by comparison of the results with those obtained for $Fe_3O_4$/Fe nanocomposite powder and is attributed to alleviation of volume change, good distribution of electrode active materials, and improved electrical conductivity upon the addition of graphene.