• Title/Summary/Keyword: Electrical double-layer capacitance

Search Result 53, Processing Time 0.02 seconds

A Study on Measuring Electrical Capacitance to Access the Volumetric Water Content of Simulated Soil

  • Rial, W.S.;Han, Y.J.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.30-37
    • /
    • 2000
  • Wet porous media representing agronomic soil that contains variable water content with variable electrolyte concentration was measured to study the shape of the curves of the electric double layer capacitance versus frequency (from 10 KHz to 10 MHz. This was done in an attempt to find the lowest practical operating frequency for developing low cost dielectric constant soil moisture probes. Cellulose sponge was used as the porous media. A high frequency electronic bridge circuit was developed for measuring the equivalent network parallel resistance and capacitance of porous media. It appears that the effects of the electric double layer component of the total parallel network capacitance essentially disappear at operating frequencies greater than approximately 25 MHz at low electrolyte concentrations but are still important at 50 MHz at higher concentrations. At these frequencies, the double layer capacitance masks the diffusion region capacitance where true water content capacitance values reside. The general shape of the curve of volumetric water content versus porous media dielectric constant is presented, with an empirical equation representing data for this type of curve. It was concluded that the lowest frequency where dielectric constant values which represent true water content information will most likely be found is between 30 and 50 MHz at low electrolyte concentrations but may be above 50 MHz when the total electrolyte concentration is near the upper level required for most mesophyte plant nutrition.

  • PDF

Dielectric Properties and a Equivalent Circuit of ZnO-Based Varistor (ZnO 바리스터의 유전특성과 등기회로)

  • Rho, Il-Soo;Kang, Dae-Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2166-2172
    • /
    • 2007
  • In this study a low-signal equivalent circuit based on the Double Schottky Barrier model is proposed for ZnO-based varistor. Since pin-lead inductance and stray capacitance are considered in pin-lead type ZnO varistor these inductance and capacitance could be removed from the experimental dielectric data of the varistor. According to the equivalent circuit simulation results the higher the varistor-voltage of varistor sample the capacitance of dielectric layer is larger, and the capacitances of semiconducting layer and depletion layer are smaller, while the parallel resistances of semiconducting layer and depletion layer are more larger values. Spectra of the dielectric loss factor $tan{\delta}$ show 2 peaks in low frequency and high frequency regions respectively. The low-frequency peak is due to the relaxation by deep donors and the high-frequency peak is due to the relaxation by shallow donors. Above results are well consistent with the theoretical mechanism of ZnO varistor.

Capacitance Enhancement and Evaluation of Gold-Deposited Carbon Nanotube Film Ion-Selective Electrode (금 입자 증착된 탄소나노튜브의 커패시턴스 증가 및 박막형 이온 선택성 전극으로서의 특성 평가)

  • Do Youn Kim;Hanbyeol Son;Hyo-Ryoung Lim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.310-317
    • /
    • 2023
  • Small-film-type ion sensors are garnering considerable interest in the fields of wearable healthcare and home-based monitoring systems. The performance of these sensors primarily relies on electrode capacitance, often employing nanocomposite materials composed of nano- and sub-micrometer particles. Traditional techniques for enhancing capacitance involve the creation of nanoparticles on film electrodes, which require cost-intensive and complex chemical synthesis processes, followed by additional coating optimization. In this study, we introduce a simple one-step electrochemical method for fabricating gold nanoparticles on a carbon nanotube (Au NP-CNT) electrode surface through cyclic voltammetry deposition. Furthermore, we assess the improvement in capacitance by distinguishing between the electrical double-layer capacitance and diffusion-controlled capacitance, thereby clarifying the principles underpinning the material design. The Au NP-CNT electrode maintains its stability and sensitivity for up to 50 d, signifying its potential for advanced ion sensing. Additionally, integration with a mobile wireless data system highlights the versatility of the sensor for health applications.

Electrical Properties of F16CuPC Single Layer FET and F16CuPc/CuPc Double Layer FET

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.174-177
    • /
    • 2007
  • We fabricated organic field-effect transistors (OFETs) based a fluorinated copper phthalocyanine ($F_{16}CuPC$) and copper phthalocyanine (CuPc) as an active layer. And we observed the surface morphology of the $F_{16}CuPC$ thin film. The $F_{16}CuPC$ thin film thickness was 40 nm, and the channel length was $50{\mu}m$, channel width was 3 mm. And we also fabricated the $F_{16}CuPc/CuPc$ double layer FET and with different $F_{16}CuPc$ film thickness devices. We observed the typical current-voltage (I-V) characteristics and capacitance-voltage (C-V) in $F_{16}CuPc$ FET and we calculated the effective mobility. From the double layer FET devices, we observed the higher drain current more than single layer FET devices.

Electrical Capacitance of Polypyrrole-Perchlorate and Polypyrrole-Naflon Film Electrodes

  • 엄재웅;백운기
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.349-352
    • /
    • 1996
  • Electrical capacitance at the interface between electrolyte solution and conducting polypyrrole film electrode was measured by a simple electrochemical method. The polymer films were electropolymerized in the presence of perchlorate (PPy-ClO4) or Nafion (PPy-Nafion) anions as the dopant ions. Both polymers exhibited large double layer capacitances which were slightly potential dependent within the potential range where the polymers are conductive. The capacitance increased in proportion to the polymer thickness. The specific capacitance were about 10 Fg-1and 44 F g-1 for PPy-Nafion and PPy-ClO4, respectively.

Electrochemical Characteristics of Highly Porous Carbon Prepared by Chemical Activation Method for EDLC (화학적 활성법으로 제조된 EDLC용 고다공성 탄소전극의 전기화학 특성)

  • Eo, Soo-Mi;Kim, Han-Joo;Oh, Seung-Mo;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2010-2012
    • /
    • 2005
  • Activated carbon was activated with chemical treatment to attain high surface area with porous structure. We have been considered activated carbon is the ideal material for high voltage electric double layer capacitor due to their high specific surface area, good conductivity and chemical stability. In this study we found that increase in electrochemical capacitance due to activated carbon. Also chemically activated carbon and water treatment have resulted larger capacitance and also exhibits better electrochemical behavior, and is about 15% more than in untreated state. The structural change in activated carbon through chemical treatment activation was investigated by using SEM and XRD. In this study, the dependence of the activation behavior with KOH in the micro structure of host materials will be discussed. Furthermore, the relation to the electric double layer capacitance, especially the specific capacitance per unit area, is also discussed.

  • PDF

Improvement of Sensitivity in Porous Silicon Alcohol Gas Sensors by UV Light (자외선조사에 의한 다공질 실리콘 알코올 센서의 감도 개선)

  • Kim, Seong-Jin;Choe, Bok-Gil
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.676-680
    • /
    • 1999
  • To do breath alcohol measurement, a sensor is necessary that it can detect low alcohol gas concentration of 0.01% at least. In this work, a capacitance-type alcohol gas sensor using porous silicon layer is developed to measure low alcohol gas concentration. The sensor using porous silicon layer has some sensitivity at room temperature by very large effective surface area, but there is still much room for improvement. In this experiment, we measured the capacitance of the sensor under 254 nm UV light on the porous silicon layer, in which alcohol solution was kept in a flask at 25, 35, and $45^{\circ}C$ by a heater. As the result, the improvement of sensitivity by illuminating UV light was observed. The increasing rate of the capacitance was shown to be double more than those measured under UV-off state. It is supposed that UV light activates response of the oriental and interfacial polarizations which have slow relaxation time for AC field.

  • PDF

Electrochemical Properties of EDLC Electrodes with Diverse Graphene Flake Sizes (그래핀 플레이크 크기에 따른 전기 이중층 커패시터용 전극의 전기화학적 특성)

  • Yu, Hye-Ryeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.112-116
    • /
    • 2018
  • Electric double layer capacitors (EDLCs) are promising candidates for energy storage devices in electronic applications. An EDLC yields high power density but has low specific capacitance. Carbon material is used in EDLCs owing to its large specific surface area, large pore volume, and good mechanical stability. Consequently, the use of carbon materials for EDLC electrodes has attracted considerable research interest. In this paper, in order to evaluate the electrochemical performance, graphene is used as an EDLC electrode with flake sizes of 3, 12, and 60 nm. The surface characteristic and electrochemical properties of graphene were investigated using SEM, BET, and cyclic voltammetry. The specific capacitance of the graphene based EDLC was measured in a 1 M $TEABF_4/ACN$ electrolyte at the scan rates of 2, 10, and 50 mV/s. The 3 nm graphene electrode had the highest specific capacitance (68.9 F/g) compared to other samples. This result was attributed to graphene's large surface area and meso-pore volume. Therefore, large surface area and meso-pore volume effectively enhances the specific capacitance of EDLCs.

Characteristics of Electric Doub1e Layer Capacitor using Polyvinylalcohol-Lithium Salts Solid Electrolyte (PVA-LiBF$_4$ 콤퍼지트 고체 전해질을 사용한 전기 이중층 커패시터의 특성)

  • 이운용;이광우;신달우;박흥우;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.211-214
    • /
    • 1998
  • The composite of polyvinylalcohol(PVA) and lithium salts(LiBF$_4$) is prepared for a solid-state electrolyte of electric double layer capacitor. The composite shows a good ionic conductivity. The solid-state electric double layer capacitor is made of PVA-LiBF$_4$ composite, activated carbon and etc.. As evaluation of characteristics of capacitor, capacitance change which measured by charge-discharge test with 2.2V~0V at 8$0^{\circ}C$ for 800 hours, was about 10%. The gravimetric and volumetric capacitance were 10.0 F/g~30.0 F/g and 16.0F/㎤~F/㎤, respectively.

  • PDF

Fabrication of Activated Porous Carbon Using Polymer Decomposition for Electrical Double-Layer Capacitors (고분자 융해 반응을 이용한 전기 이중층 커패시터용 다공성 활성탄 제조)

  • Sung, Ki-Wook;Shin, Dong-Yo;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.623-630
    • /
    • 2019
  • Because of their excellent stability and highly specific surface area, carbon based materials have received attention as electrode materials of electrical double-layer capacitors(EDLCs). Biomass based carbon materials have been studied for electrode materials of EDLCs; these materials have low capacitance and high-rate performance. We fabricated tofu based porous activated carbon by polymer dissolution reaction and KOH activation. The activated porous carbon(APC-15), which has an optimum condition of 15 wt%, has a high specific surface area($1,296.1m^2\;g^{-1}$), an increased average pore diameter(2.3194 nm), and a high mesopore distribution(32.4 %), as well as increased surface functional groups. In addition, APC has a high specific capacitance($195F\;g^{-1}$) at low current density of $0.1A\;g^{-1}$ and excellent specific capacitance($164F\;g^{-1}$) at high current density of $2.0A\;g^{-1}$. Due to the increased specific surface area, volume ratio of mesopores, and surface functional groups, the specific capacitance and high-rate performance increased. Consequently, the tofu based activated porous carbon can be proposed as an electrode material for high-performance EDLCs.