• Title/Summary/Keyword: Electrical contact resistivity

Search Result 184, Processing Time 0.026 seconds

Effects of Water Treating on Surface Properties of Epoxy Insulation Materials (Epoxy 절연재료이 표면특성에 미치는 수분처리의 영향)

  • Lim, Kyung-Bum;Lee, Duck-Chool
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.10
    • /
    • pp.553-558
    • /
    • 2000
  • This paper deals with change of contact angle, surface potential decay, surface resistivity and XPS of water-treated epoxy insulator. From the experimental results on the contact angle was reduced from $74^{\circ}$to $24^{\circ}$ due to the formation of polar hydroxyl groups on surface which was associated with intermolecular reaction between epoxy chains of three-dimensional network structure and water molecules. From the experimental results in the surface potential decay of water treated-samples, it was found that the accumulation of charge is decreased and the surface potential decay time is shortened by the interaction of polar hydroxyl groups induced on the treated surface as the increment of treatment time. The positive charging on the treated surface compared with negative charging is relatively lowered by the induction of polar hydroxyl groups. The surface resistivity was changed from $10^{15}[{\Omega}/cm^2$] to $10^{12}[{\Omega}/cm^2$] caused by water treatment. From XPS, it was found that the changes affected by the surface degradation of epoxy were caused by the generation of carboxyl groups through the chain decomposition and recombination with oxygen molecules in the air.

  • PDF

Effects of Heat Treatment on Electrical and Mechanical Properties of Glass Fiber Reinforced Epoxy (열처리가 유리섬유 강화 복합재료의 전기적 및 기계적 성질에 미치는 영향)

  • 이백수;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.174-180
    • /
    • 1998
  • In this work, the properties of FRP, which is applied recently in the composite insulating materials, by thermal treatment were investigated. The specimens were epoxy glass laminates fabricated by thermal press method and had the volume content of 46[%] cutted $45^{\circ}C$ in the fiber direction and 1.0[mm] thickness. The experimental results showed that the amount of weight loss, wettability, surface potential, and surface resistivity increased up to 200[$^{\circ}C$] as a function of temperature. Usually, most degradations caused the hydrophilic to decrease the contact angle. But, in this work on thermal-degradated FRP, we can confirm the introduction of hydrophobic properties by cross-linking and the ablation of polar small-molecules rather than chain scission and oxidation. Finally, weight loss and contact angle increased. These phenomena show the existence of hydrophobic surface. With the change to the hydrophobic surface and the electrical potential and resistivity on FRP surface increased. But, the dielectric properties and tensile stength are decreased.

  • PDF

High Temperature Ohmic Contacts to Monocrystalline $\beta$-SiC Thin Film Using Nitride Thin Films (질화물 박막을 이용한 단결정 $\beta$-SiC의 고온 ohmic 접촉 연구)

  • Choe, Yeon-Sik;Na, Hun-Ju;Jeong, Jae-Gyeong;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Refractory metals, W and Ti, and their nitrides, $W_2N$ and TiN, were investigated for using as an ohmic contact material with SiC single crystalline thin films. The possibility of nitride materials for using as a stable ohmic contact material of SiC at high temperatures was examined by considering the thermal stability depending on the heat treatment temperature, their electrical properties and protective behavior from the interdiffusion. W contact with SiC thin films, deposited by using new organosilicon precursor, bis-trimethylsilylmethane, showed the lowest resistivity, $2.17{\times}10^{-5}$$\textrm{cm}^2$. On the other hand, Ti-based contact materials showed higher contact resistivity than W-based ones. The oxidation of contact materials was restricted by applying Pt thin films on those electrodes. Nitride electrodes had rather stable electrical properties and better protective behavior from interdiffusion than metal electrodes.

  • PDF

Formation of Ohmic Contacts on acceptor ion implanted 4H-SiC (이온 이온주입한 p-type 4H-SiC에의 오믹 접촉 형성)

  • Bahng, W.;Song, G.H.;Kim, H.W.;Seo, K.S.;Kim, S.C.;Kim, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.290-293
    • /
    • 2003
  • Ohmic contact characteristics of Al ion implanted n-type SiC wafer were investigated. Al ions implanted with high dose to obtain the final concentration of $5{\times}10^{19}/cm^3$, then annealed at high temperature. Firstly, B ion ion implanted p-well region were formed which is needed for fabrication of SiC devices such as DIMOSFET and un diode. Secondly, Al implanted high dose region for ohmic contact were formed. After ion implantation, the samples were annealed at high temperature up to $1600^{\circ}C\;and\;1700^{\circ}C$ for 30 min in order to activate the implanted ions electrically. Both the inear TLM and circular TLM method were used for characterization. Ni/Ti metal layer was used for contact metal which is widely used in fabrication of ohmic contacts for n-type SiC. The metal layer was deposited by using RF sputtering and rapid thermal annealed at $950^{\circ}C$ for 90sec. Good ohmic contact characteristics could be obtained regardless of measuring methods. The measured specific contact resistivity for the samples annealed at $1600^{\circ}C\;and\;1700^{\circ}C$ were $1.8{\times}10^{-3}{\Omega}cm^2$, $5.6{\times}10^{-5}{\Omega}cm^2$, respectively. Using the same metal and same process of the ohmic contacts in n-type SiC, it is found possible to make a good ohmic contacts to p-type SiC. It is very helpful for fabricating a integrated SiC devices. In addition, we obtained that the ratio of the electrically activated ions to the implanted Al ions were 10% and 60% for the samples annealed at $1600^{\circ}C\;and\;1700^{\circ}C$, respectively.

  • PDF

Analysis of Electric Shock Hazards due to Touch Current According to Soil Resistivity Ratio in Two-layer Earth Model (2층 대지모델에서 대지저항률의 비율에 따른 접촉전류에 의한 감전의 위험성 분석)

  • Lee, Bok-Hee;Kim, Tae-Ki;Cho, Yong-Seung;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.68-74
    • /
    • 2011
  • The touch or step voltages which exist in the vicinity of a grounding electrode are closely related to the earth structure and resistivity and the ground current. The grounding design approach is required to determine the grounding electrode location where the hazardous voltages are minimized. In this paper, in order to propose a method of mitigating the electric shock hazards caused by the ground surface potential rise in the vicinity of a counterpoise, the hazards relevant to touch voltage were evaluated as a function of the soil resistivity ratio $\rho_2/\rho_1$ for several practical values of two-layer earth structures. The touch voltage and current on the ground surface just above the test electrode are calculated with CDEGS program. As a consequence, it was found that burying a grounding electrode in the soil with low resistivity is effective to reduce the electric shock hazards. In the case that the bottom layer soil where a counterpoise is buried has lower resistivity than the upper layer soil, when the upper layer soil resistivity is increased, the surface potential is slightly raised, but the current through the human body is reduced with increasing the upper layer soil resistivity because of the greater contact resistance between the earth surface and the feet. The electric shock hazard in the vicinity of grounding electrodes is closely related to soil structure and resistivity and are reduced with increasing the ration of the upper layer resistivity to the bottom layer resistivity in two-layer soil.

The Characterization of the Resin Bonded Graphite Composite Bipolar Plate using Isotropic Graphite Powder for PEM Fuel Cell

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Hui, Seung-Hun;Kim, Hong-Suk;Chung, Yoon-Jung;Lim, Yun-Soo
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.326-334
    • /
    • 2007
  • In this study, graphite composites were fabricated by warm press molding method to realize commercialization of PEM fuel cells. Graphite composites have been considered as alternative economic materials for bipolar plate of PEM fuel cells. Graphite powder that enables to provide electrical conductivity was selected as the main substance. The graphite powder was mixed with phenolic resin and the mixture was pressed using a warm press method. First of all, the graphite powder was pulverized with a ball mill for the dense packing of composite. As the ball milling time increases, the average size of particles decreases and the size distribution becomes narrow. This allows for improvement of the uniformity of graphite composite. However, the surface electrical resistivity of graphite composite increases as the ball milling time increases. It is due to that graphite particles with amorphous phase are generated on the surface due to the friction and collision of particles during pulverizing. We found that the contact electrical resistivity of graphite particles increases as the particle size decreases. The contact electrical resistivity of graphite powders was reduced due to high molding pressure by warm press molding. This leads to improvement of the mechanical properties of graphite composite. Hydrogen gas impermeability was measured with the graphite composite, showing a possibility of the application for bipolar plate in fuel cell. And, I-V curves of the graphite composite bipolar plate exhibit a similar performance to the graphite bipolar plate.

Effect of Dispersion of Silver Particles on the Electrical Conduction in Silver-Polymer Composites. (Silver-polyner 적합도전류물에서 은립자의 분석상태가 전기운도에 미치는 영향)

  • 김한성;김재호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.1
    • /
    • pp.55-62
    • /
    • 1988
  • The variation of electrical resistivity of silver particle-filled polymers with the volume percent of silver particles was investigated. Also, the relationships between the surface tension of polymer and dispersion effect of silver particles were studied to find the steep drop of electrical resisivity, in view of agglomerate morphology. The critical volume precent of silver particles varied depending on the polymer species and increased with the increasing surface tension of polymer. The steep variation of resistivity with the increasing temperature was explained with the expansion of polymer at the melting temperature of polymer. The conductive break down current increased with the increasing volume percent of silver particles in the Ag/LDPE system and that was attributed to heat of Joule taken througn the contact area between the silver particle.

  • PDF

Enhancement of light reflectance and thermal stability in Ag-Mg alloy contacts on p-type GaN

  • Song, Yang-Hui;Son, Jun-Ho;Kim, Beom-Jun;Jeong, Gwan-Ho;Lee, Jong-Ram
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.18-20
    • /
    • 2010
  • The mechanism for suppression of Ag agglomeration in Ag-Mg alloy ohmic contact to p-GaN is investigated. The Ag-Mg alloy ohmic contact shows low contact resistivity of $6.3\;{\times}\;10^{-5}\;{\Omega}cm^2$, high reflectance of 85.5% at 460 nm wavelength after annealing at $400^{\circ}C$ and better thermal stability than Ag contact The formation of Ga vacancies increase the net hole concentration, lowering the contact resistivity. Moreover, the oxidation of Mg atoms in Ag film increase the work function of Ag-Mg alloy contact and prevents Ag oxidation. The inhibition of oxygen diffusion by Mg oxide suppresses the Ag agglomeration, leading to enhance light reflectance and thermal stability.

  • PDF

Investigation of Ni/Cu Solar Cell Using Selective Emitter and Plating (선택도핑에 도금법으로 Ni/Cu 전극을 형성한 태양전지에 관한 연구)

  • Kwon, Hyuk-Yong;Lee, Jae-Doo;Lee, Hae-Seok;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.1010-1017
    • /
    • 2011
  • The use of plated front contact for metallization of silicon solar cell may alternative technologies as a screen printed and silver paste contact. This technologies should allow the formation of contact with low contact resistivity a high line conductivity and also reduction of shading losses. A selective emitter structure with highly dopes regions underneath the metal contacts, is widely known to be one of the most promising high-efficiency solution in solar cell processing. When fabricated Ni/Cu plating metallization cell with a selective emitter structure, it has been shown that efficiencies of up to 18% have been achieved using this technology.

Surface Properties of Epoxy Composites by Plasma Treatment (플라즈마처리에 따른 에폭시 복합재료의 표면특성)

  • 임경범;이백수;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.821-827
    • /
    • 2001
  • In this study performed to identify a degradation mechanism in macromolecular insulating material, the contact angel, surface potential decay, surface resistivity, and XPS analysis were compared after exposure of FRP laminate to plasma discharge. In the case of contact angle, the surface of specimen untreated showed weak hydrophobic property of 73。. However, the contact angle was decreased to 20。in the plasma-treated specimen. In the case of chemical changes arising form plasma treatment, carboxl radicals were generated mainly in the surface treated, which was rapidly changed to the hydrophilic one. In the corona potential decay study to determine the electrical changes of the surface, positive charges were rapidly decreased when compared with negative charges, leading to negative property in the surface of specimen not treated. However, in the case of the hydrophilic surface, lots of carboxl radicals acting as positive polarity were generated, resulting in positive surface. Owing to such positive surface, charges of negative polarity applied were rapidly decreased.

  • PDF