• Title/Summary/Keyword: Electrical conductivity.

Search Result 3,514, Processing Time 0.028 seconds

Dependency of the Critical Carbon Content of Electrical Conductivity for Carbon Powder-Filled Polymer Matrix Composites

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.365-369
    • /
    • 2015
  • This paper investigates the dependency of the critical content for electrical conductivity of carbon powder-filled polymer matrix composites with different matrixes as a function of the carbon powder content (volume fraction) to find the break point of the relationships between the carbon powder content and the electrical conductivity. The electrical conductivity jumps by as much as ten orders of magnitude at the break point. The critical carbon powder content corresponding to the break point in electrical conductivity varies according to the matrix species and tends to increase with an increase in the surface tension of the matrix. In order to explain the dependency of the critical carbon content on the matrix species, a simple equation (${V_c}^*=[1+ 3({{\gamma}_c}^{1/2}-{{\gamma}_m}^{1/2})^2/({\Delta}q_cR]^{-1}$) was derived under some assumptions, the most important of which was that when the interfacial excess energy introduced by particles of carbon powder into the matrix reaches a universal value (${\Delta}q_c$), the particles of carbon powder begin to coagulate so as to avoid any further increase in the energy and to form networks that facilitate electrical conduction. The equation well explains the dependency through surface tension, surface tensions between the particles of carbon powder.

The Electrical Characteristics of Amorphous $Te_{80}Se_{10}Sb_{10}$ Thin Film (비정질$Te_{80}Se_{10}Sb_{10}$ 박막의 전기적 특성)

  • 김흥석;이영종;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.238-241
    • /
    • 1996
  • In this paper, we investigated the electrical characteristics which is d.c. and a.c. conductivity of the amorphous Te$_{80}$Se$_{10}$Sb$_{10}$thin film prepared by thermal evaporation. As the results, the d.c. conduction mechanism was followed thermally activated conduction and from the data of d.c. conductivity, the acti-vation energy and mobility gap were obtained. the d.c. conductivity was increased with temperature and a.c. conductivity also was increased with temperature and frequency. It can consider that the annealing is indispensable for higher conductivity since the activation energy decreased but d.c. and a.c. conductivity increased with annealing.aling.

  • PDF

Low-Temperature Electrical Conductivity of Sintered Body in the Systems $CaO-ZrO_2$ ($CaO-ZrO_2$계 소결체의 저열 전기부도제에 관한 연구)

  • 박금철;최영섭
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.2
    • /
    • pp.135-142
    • /
    • 1984
  • The electrical conductivity of compositions in the system $CaO-ZrO_2$ has been measured by 2-probe tech-nique in the temperature range 350~75$0^{\circ}C$. The composition of maximum conductivity in this system is within the cubic solid-solution region close to low-calcia cubic solid-solution phase boundary. The results are as follows : 1) The maximum conductivity was found 13mol CaO in zirconia. 2) As the CaO content was increased from 13 to 21 mol% the electrical conductivity decreased for any given temperature and the activation energy increased. 3) As the firing temperature and soaking time was increased the electrical conductivity increased and activation energy decreased.

  • PDF

EFFECT OF Fe CONTENT ON THE MECHANICAL PROPERTIES AND THERMAL CONDUCTIVITY OF THE Al-RE ALLOYS

  • HYO-SANG YOO;YONG-HO KIM;HYEON-TAEK SON
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.3
    • /
    • pp.1029-1033
    • /
    • 2020
  • In this study, we investigated the effect of Fe addition (0, 0.25, 0.50 and 0.75 wt.%) on the microstructure, mechanical properties and electrical conductivity of as-cast and as-extruded Al-RE alloys. As the Fe element increased by 0 and 0.75wt.%, the phase fraction increased to 5.05, 5.76, 7.14 and 7.38 %. The increased intermetallic compound increased the driving force for recrystallization and grain refinement. The electrical conductivity of Al-1.0 wt.%RE alloy with Fe addition decreased to 60.29, 60.15, 59.58 and 59.13 %IACS. With an increase in the Fe content from 0 to 0.75 wt.% the ultimate tensile strength (UTS) of the alloy increased from 74.3 to 77.5 MPa. As the mechanical properties increase compared to the reduction of the electrical conductivity due to Fe element addition, it is considered to be suitable for fields requiring high electrical conductivity and strength.

Synthesis of Conducting Diamond-Like Carbon Films by TRIODE Magnetron Sputtering-Chemical Vapor Deposition (3극 마그네트론 스퍼트링 화학 기상 증착법에 의한 도전성 다이아몬드성 탄소 박막의 합성)

  • Lee, Jong-Yul;Tae, Heung-Sik;Pyo, Jae-Hwack;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.243-245
    • /
    • 1994
  • We synthesized the conducting diamond-like carbon films using plasma-enhanced chemical vapor deposition and analysized its characteristics. We obtained the metal-containing diamond-like carbon films using $CH_4$, Ar gas and aluminum target. We observed the changes of electrical conductivity, microhardness and surface morphology according to $Ar/CH_4$ ratio, substrate bias and target bias. As the target bias and $Ar/CH_4$ ratio increase and the substrate bias decreases, the electrical conductivity and surface roughness increase. The increase of hardness involves decrease of the electrical conductivity. Metal-containing amorphous hydrogenated carbon films show improved adhesion on metal substrates compared to pure diamond-like carbon films and better electrical conductivity.

  • PDF

Effect of Mechanical Damping and Electrical Conductivity on the Dynamic Performance of a Novel Electromagnetic Engine Valve Actuator

  • Park, Sang-Shin;Kim, Jin-Ho;Choi, Young;Chang, Jung-Hwan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.72-74
    • /
    • 2008
  • We investigate the effect of mechanical damping and electrical conductivity on the dynamic performance of a new electromagnetic engine valve actuator that employs a permanent magnet. The key dynamic performance factors are the transition time and the landing velocity of the armature. Two-dimensional dynamic finite element analyses are performed to simulate a coupled system. The results show that mechanical damping and electrical conductivity have similar effects on the dynamic performance of the engine valve actuator. Subsequently, it is possible to replace the role of mechanical damping by controlling the electrical conductivity through the thickness and number of steel core laminations.

Development of Automatic System for Diagnosis of Mastitis in Dairy Cattle (유방염 자동진단시스템 개발)

  • 김명순;김용준
    • Journal of Veterinary Clinics
    • /
    • v.15 no.2
    • /
    • pp.242-246
    • /
    • 1998
  • These studies were Performed to provide some basic informations for developing an automatic system in dairy farming in order that the farmers may easily and automatically detect the mastitis. Electrical conductivity of each milk sample was measured by micro-ohm meter and also the number of somatic cell was detected by somecounter. The major microorganisms causing mastitis were also investigated. The rate of infected cattle with mastitis was 33.0% among 2,540 dairy cattle and the rate of infected quarters with mastitis was 13.9 % among 9.660 quarters. When the number of somatic cell was under lost electrical conductivity of the milk was 0.073, whereas number of somatic cell was over $3{\times}10^{6}$, electrical conductivity was increased by 0.167. When electrical conductivity of milk was over 0.073, the cattle was diagnosised as mastitis. The major micmorganisms of mastitis were Staphylococcus spp. (55-60%) and Streptococcus spp. (15-20%).

  • PDF

An Experimental Study on the Measurement of Electrical Conductivity of Cementitious Composites According to the Type of Steel Fiber (강섬유 종류에 따른 시멘트 복합체의 전기전도도 측정에 대한 실험적 연구)

  • Lee, Yae-Chan;Kim, Gyu-Yong;Nam, Jeong-Soo;Lee, Sang-Kyu;Shu, Dong-Kyun;Eu, Ha-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.191-192
    • /
    • 2020
  • The purpose of this study is to measure the electrical conductivity of cementitious composites as an early step to obtain shielding performance by mixing various type of steel fiber into cementitious composites, the main building material of protection facility, to shield electromagnetic pulse (EMP) damage. Fiber such as conductors as amorphous metallic fiber, hooked steel fiber, and smooth steel fiber are mixed into cementitious composites to give electrical conductivity and measure the impedance of concrete using LCR meter. By doing this, the electrical conductivity of each type of steel fiber reinforced cementitious composites (FRCC) is compared.

  • PDF

A Study on the Electrical Conductivity and Electromagnetic Pulse Shielding Characteristics of Metal Sprayed Coating (금속 용사 피막의 전기전도도 및 전자파 차폐 특성에 관한 연구)

  • Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.8-9
    • /
    • 2020
  • In this study, the electrical conductivity and shielding effect were evaluated according to the type of metal and the thickness of Metal sprayed coating. The metals used for the test are Cu, Cu-Ni and Cu-Zn, and the thicknesses were 100, 200, 500 um. Each metal sprayed coating was evaluated for electrical conductivity and electromagnetic shielding effect. When the thickness was 200 ㎛ or more, shielding effect 80 dB or more was satisfied at 1 GHz. However, in the case of Cu-Ni, there is little electrical conductivity at a thickness of 100 um or less due to the generated voids, and electromagnetic wave shielding performance cannot be expected. Therefore, To ensure electromagnetic shielding effect of structures, it is considered that the minimum thickness of metal spraying coating should be 200 um.

  • PDF

Correlation between Electrical Conductivity and Shielding Effectiveness of Cementitous Composites according to length and volume fraction of steel fiber (강섬유의 길이 및 혼입률에 따른 시멘트 복합체의 전기전도도와 차폐효과의 상관관계)

  • Lee, Yae-Chan;Kim, Gyu-Yong;Eu, Ha-Min;Choi, Byung-Cheol;Sasui, Sasui;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.213-214
    • /
    • 2022
  • The purpose of this study is to compare and analyze the effect of the length and volume fraction of smooth steel fiber on the electrical conductivity and shielding effectiveness of cementitious composites. As the length and volume fraction of the fiber increase, the movement of electrons becomes active and the formation of a conductive path becomes advantageous, thereby increasing electrical conductivity. Accordingly, the electrical conductivity and the shielding effectiveness showed a very close relationship. Thereafter, it is judged that research is needed to increase the shielding effect.

  • PDF