• Title/Summary/Keyword: Electrical conduction characteristics

Search Result 421, Processing Time 0.033 seconds

An Analysis of Noise Characteristics according to PWM Method in 2-Phase Conduction Method (2상 통전 방식에서의 PWM 방식에 따른 소음 특성 분석)

  • Oh, Jae-Yoon;Cheong, Dal-Ho;Kim, Jung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2632-2634
    • /
    • 1999
  • In this paper, we analyze the characteristics of Motor Noise according to PWM method, especially in the case of 2-phase conduction method. There are two types of PWM methods used usually. One is Lower-PWM and the other is Upper&Lower PWM. Because there is a difference between freewheeling path of both methods, Current profiles of two methods are different. This makes the difference of Torque Ripple and so difference of Noise Performance. In this paper, the path will be analyzed and the comparison of Noise performance of two types of PWM methods will be showed by experiment results.

  • PDF

Speed Characteristics of Switched Reluctance Motor at High Speeds with Advance Angle Variation (고속회전을 위한 Switched Reluctance Motor의 Advance Angle 변화에 따른 특성해석)

  • Cho, K.Y.;Lim, J.Y.;Shin, D.J.;Kim, C.H.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.321-324
    • /
    • 1995
  • Switched reluctance motors and drives are increasingly used in high speed applications due to their robust mechanical structures, low inertia, and reduction in the rotor losses. The turn-on angle has to be advanced as the motor speed increases, but it may cause the starting problem in some rotor positions. In this paper, the characteristics of the maximum speed and input voltage with the advance angle at high speeds is investigated. To overcome the starting problem and reduce the torque ripple, conduction overlapping is added in adjacent phases. The effectiveness of conduction overlapping is verified through the simulation and experiments.

  • PDF

The Electrical Insulation Characteristics of HTS SMES (초고온초전도 SMES의 절연특성)

  • Cheon, Hyeon-Gweon;Choi, Jae-Hyeong;Kim, Hae-Jong;Seong, Ki-Chul;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.623-626
    • /
    • 2005
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 77 K should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. Recently, research and development concerning application of the conduction-cooled HTS SMES that is easily movement are actively progressing in Korea. Electrical insulation under cryogenic temperature is a key and an important element in the application of this apparatus. Using multi wrapped copper by polyimide film for HIS SMES, the breakdown characteristics of models for turn-to-turn, that is surface contact model, were investigated under ac and impulse voltage at 77 K. A material that is Polyimide film (Kapton) 0.025 mm thickness is used for multi wrapping of the electrode. Statistical analysis of the results using Weibull distribution to examine the wrapping number effects on breakdown voltage under ac and impulse voltage in $LN_2$ was carried.

  • PDF

A Study on the Design and Electrical Characteristics Enhancement of the Floating Island IGBT with Low On-Resistance

  • Jung, Eun-Sik;Cho, Yu-Seup;Kang, Ey-Goo;Kim, Yong-Tae;Sung, Man-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.601-605
    • /
    • 2012
  • Insulated Gate Bipolar Transistors(IGBTs) have received wide attention because of their high current conduction and good switching characteristics. To reduce the power loss of IGBT, the onstate voltage drop should be lowered and the switching time should be shortened. However, there is trade-off between the breakdown voltage and the on-state voltage drop. The FLoatingIsland(FLI) structure can lower the on-state voltage drop without reducing breakdown voltage. In this paper, The FLI IGBT shows an on-state voltage drop that is 22.5% lower than the conventional IGBT, even though the breakdown voltages of each IGBT are almost identical.

The Electrical Characteristics of $(Ba_{0.5}\;Ca_{0.5})TiO_{3}$ Humidity-Sensitive Devices ($(Ba_{0.5}\;Ca_{0.5})TiO_{3}$ 감습소자의 전기적 특성)

  • Yuk, Jae-Ho;Lee, Duck-Chool
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.33-40
    • /
    • 1996
  • $(Ba_{0.5}\;Ca_{0.5})TiO_{3}$ humidity-sensitive devices were fabricated by a solid reaction method, and their electrical properties were investigated. The specimens exhibited good humidity sensitivity, in which the impedance changes linearly. It is shown that electrical conduction with moisture adsorption is dominated by the ions through characteristics of charging and discharing current, and electrical conductivity increases as rasing the temperature and relative humidity. It is realized that relative permittivity increases and activation energy decreases with increasing relative humidity.

  • PDF

Analysis of Charge Transfer Mechanism in Molecular Memory Device using Temperature-dependent Electrical Measurement (온도에 의존하는 전기적 측정을 이용한 분자 메모리 소자의 전하 이동 메커니즘 분석)

  • Choi, Kyung-Min;Koo, Ja-Ryong;Kim, Young-Kwan;Kwon, Sang-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.615-619
    • /
    • 2008
  • A molecular memory device which has a structure of Al/$Al_2O_3$/ASA-15 LB monolayer/Ti/Al device, was fabricated. To study a charge transfer mechanism of molecular memory devices, current density-voltage (J-V) characteristics were measured at an increasing temperature range from 10 K to 300 K with an interval of 30 K. Strong temperature-dependent electrical property and tunneling through organic monolayer at low bias (below 0.5 V) were appeared. These experimental data were fitted by using a theoretical formula such as the Simmons model. In comparison between the theoretical and the experimental results, it was verified that the fitting results using the Simmons model about direct tunneling was fairly fitted below 0.5 V at both 300 K and 10 K. Hopping conduction was also dominant at all voltage range above 200 K due to charges trapped by defects located within the dielectric stack, including the $Al_2O_3$, organic monolayer and Ti interfaces.

Properties of Surface Electrical Conduction in Materials for Outdoor Insulator (옥외 애자용 재료의 표면 전기전도특성)

  • 박영국;강성화;정수현;이운석;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.207-210
    • /
    • 1998
  • Surface electrical conduction in insulator is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the widely used materials for outdoor insulator - porcelain, EPDM, Silicone rubber - were discussed by measuring properties of average leakage current and scintillation discharge pulses under artificial contamination conditions. The artificial contaminations used were deionized distilled water fog, 0.5wt% NaCl salt fog of light pollution and 2wt% NaCl salt fog of medium pollution. The average leakage current was appeared linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage was most different to that in case of dry and clean condition. In case of salt fog pollution condition. The leakage current was increased above critical voltage. The scintillation discharges were also activated at the level the leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF

Electrical Conduction Properties of Surface in Materials for Outdoor Insulator (옥외 애자용 재료의 표면 전기전도 특성)

  • 박영국;이운석;정수현;장동욱;임기조
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.758-762
    • /
    • 1998
  • Electrical conduction property of insulator surface is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the materials to be used for outdoor insulator such as porcelain, EPDM, silicone rubber was discussed by measuring properties of average leakage current and scintillation discharge pulses under salt fog conditions. The fog was applied by nozzle in chamber and fogging fluids were deionized distilled water, 0.5wt% NaCI solution and 2wt% NaCl solution. The average leakage current showed linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage were much different to those in case of dry and clean condition with 2wt% salt fog. In case of slat fog pollution condition, the leakage current was increased above critical voltage. the scintillation discharges were also activated at the level. The leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF

Deterioration Characteristics of ZnO Surge Arrester Blocks for Power Distribution Systems Due to Impulse Currents (임펄스전류에 의한 배전용 ZnO 피뢰기 소자의 열화특성)

  • Lee, Bok-Hee;Cho, Sung-Chul;Yang, Soon-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.79-86
    • /
    • 2013
  • In order to analyze the electrical performance of ZnO surge arresters stressed by the combined DC and AC voltages that are generated in DC/AC converter systems, the leakage current properties of ZnO surge arrester blocks deteriorated by impulse currents were investigated. The test specimens were deteriorated by the 8/$20{\mu}s$ impulse current of 2.5kA and the leakage currents flowing into the deteriorated zinc oxide(ZnO) arrester blocks subjected to the combined DC and power frequency AC voltages are measured. As a result, the leakage currents flowing through deteriorated ZnO surge arrester blocks were higher than those flowing through the fine ZnO surge arrester blocks and the larger the injection number of 8/$20{\mu}s$ impulse current of 2.5kA is, the greater the leakage current is. The leakage current-voltage curves(I-V curves) of the fine and deteriorated ZnO surge arrester blocks stressed by the combined DC and AC voltages show significant difference in the low conduction region. Also the cross-over phenomenon is observed at the voltage close to the knee of conduction on plots of I-V curves.

Implementation of an Interleaved AC/DC Converter with a High Power Factor

  • Lin, Bor-Ren;Lin, Li-An
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.377-386
    • /
    • 2012
  • An interleaved bridgeless buck-boost AC/DC converter is presented in this paper to achieve the characteristics of low conduction loss, a high power factor and low harmonic and ripple currents. There are only two power semiconductors in the line current path instead of the three power semiconductors in a conventional boost AC/DC converter. A buck-boost converter operated in the boundary conduction mode (BCM) is adopted to control the active switches to achieve the following characteristics: no diode reverse recovery problem, zero current switching (ZCS) turn-off of the rectifier diodes, ZCS turn-on of the power switches, and a low DC bus voltage to reduce the voltage stress of the MOSFETs in the second DC/DC converter. Interleaved pulse-width modulation (PWM) is used to control the switches such that the input and output ripple currents are reduced such that the output capacitance can be reduced. The voltage doubler topology is adopted to double the output voltage in order to extend the useable energy of the capacitor when the line voltage is off. The circuit configuration, principle operation, system analysis, and a design example are discussed and presented in detail. Finally, experiments on a 500W prototype are provided to demonstrate the performance of the proposed converter.