• Title/Summary/Keyword: Electrical and electronic equipments

Search Result 192, Processing Time 0.026 seconds

Characteristics of the Voltage Waveforms Caused by Electrostatic Discharges (정전기 방전에 의해 발생하는 전압 파형의 특성)

  • Lee, B.H.;Lee, T.R.;Lee, K.O.;Kim, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1721-1723
    • /
    • 2001
  • With the rapid development of electronics industry and information-oriented society, the threat of fields radiated from electrostatic discharges (ESDs) to the electronic equipments is becoming more and more dangerous. To apply a proper protection method this paper presents the results of the measurement of the voltage and current peaks and the rise time of ESD derived from a charged human body under a variety of experimental conditions.

  • PDF

The Recommendation on Power Saving through the Measuring of the Standby Power of OA Equipments (OA기기의 대기전력 측정을 통한 절전 평가 제안)

  • Kim, Man-Geon;Choi, Don-Mook
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.161-167
    • /
    • 2013
  • The purpose of this study was to assess power loss in the computer and office automation equipment and identified a way to save power consumptions through field measurement. In this study, the meaning of standby power was to consume power while waiting for the use of any electronic equipment. This standby consumption was about 11% of total power consumption even though we did not seriously realize it. Therefore, it was very important to measure accurate power consumption at the standby status of electronic equipment. In addition, it also helped to reduce potential risks of electricity associated disasters. This study proposed the way to reduce power losses through automatic turn off switches for power outlets and switches. Finally, this study can evaluate power consumption patterns that can reduce power consumptions and potential risks of power related disasters. This also can achieve the goals of sustainability that can reduce environmental impacts by lowering energy consumptions and greenhouse gas emissions.

An Effective Approach of Installation of Surge Protective Devices for AC Mains (전원선용 SPD의 효과적인 설치기법)

  • Lee, Dong-Moon;Jeong, Dong-Cheol;Lee, Seung-Chil;Lee, Bok-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2229-2231
    • /
    • 2005
  • Recently, damages of electronic equipments due to lightning surges coming from AC power lines are increasing. In this work, to propose the effective installation methods of surge protective devices(SPDs), the protective performances of SPDs in actual-sized test circuits were experimentally investigated. In order to obtain the lowest limiting voltage and best protection, long leads of SPDs in installation practices are significantly undesirable. An effective installation method of SPDs for AC mains was proposed. The way of installing SPDs at every branch circuits is more effective than that of installing a SPD near the point of entry.

  • PDF

Analysis on the EMC evaluating method for applying wireless communications in NPP (원전 내 무선통신 적용에 대한 전자파 적합성 평가방법 분석)

  • Kang, SeungSeok;Lim, Tae Heung;Choo, Jaeyul;Kim, HyungTae;Kim, DaeHee;Byun, Gangil;Park, Jong Eon;Lee, Jun-Yong;Choo, Hosung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2221-2231
    • /
    • 2017
  • In this paper, we surveyed previous cases, network protocols (such as Wi-Fi, Zigbee, Z-wave, and WirelessHart) and propagation characteristics on the application of maintaining equipments for instrumentation and control (I&C) using wireless communication techniques inside the nuclear power plant (NPP). In addition, we compared and analyzed the difference of detailed regulations with respect to the electromagnetic interference (EMI) and radio frequency interference (RFI) in the Regulatory Guide 1.180 rev. 1 (RG. 1.180) for adopting the wireless communication techniques inside the NPP, and other regulations, such as MIL-STD 461E and IEC 61000-4, that are recognized in the KINS/RG-N03.09 (Rev. 2). Furthermore, we investigated evaluating factors about electromagnetic properties by considering indoor environments, wave scattering, shielding effectiveness, and the indoor wave attenuation model that were not included in the current electromagnetic compatibility regulation.

Electrical and Thermal Characterization of Organic Varnish Filled with ZrO2 Nano Filler Used in Electrical Machines

  • Selvaraj, D. Edison;Vijayaraj, R.;Sugumaran, C. Pugazhendhi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1700-1711
    • /
    • 2015
  • In the last decade it has been witnessed significant developments in the area of nano particles and nano scale fillers on electrical, thermal, and mechanical properties of polymeric materials such as resins, varnishes, enamel and bakelites. The electric and thermal properties were more important in the electrical equipments for both steady state and transient state conditions. This paper deals with the characterization of the electric and thermal properties of the pure varnish and zirconia (ZrO2) filler mixed varnish. The electric properties such as dielectric loss (tan δ), dielectric constant (ε), dielectric strength and partial discharge voltage were analyzed and detailed for different samples. It was observed that zirconia nano filler mixed varnish has the superior dielectric and thermal properties when compared to those of standard varnish. It has shown that at power frequency the 1wt% nano composite sample has the higher permittivity value when compared to other samples. It has been examined that the 1wt% sample was having higher inception and extinction voltages when compared to other samples. It has been observed that 1wt% sample has higher dielectric strength when compared with other samples. There has been an improvement of thermal property by adding few weight percent of zirconia nano fillers. There was not much variation in glass transition among the nano mixed composites. The weight loss was improved at 1wt% of the zirconia nano fillers.

A Study on the Standby Power Characteristics of Sensor Luminaires (광원별 센서등기구의 대기전력 특성에 관한 연구)

  • Park, Chang-Yong;Seo, Jeong-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.9-15
    • /
    • 2014
  • Standby power, so called an electric vampire, is a power which is consumed by appliances and office equipments connected to power sources while the devices are not performing. Sensor luminaires consist of PIR(Pyroelectric Infrared Ray) sensor, illuminance sensor(CdS), and light source. The sensor luminaires are one of the devices that consume a huge amount of standby power; it stands by for an average sum of 23 hours a day and performs only when moving subjects are detected under it, which barely takes up an hour per day. The purpose of this study is to provide basic materials to the selection of standby power items and to enable to explore a way to decrease the standby power by measuring and analyzing the power consumption of sensor luminaires. According to the results, the average standby power of LED sensor luminaires is 1.1W which is significantly higher than other products, and decrease in the standby power consumption of SMPS is important through the measurement.

A Web-based Virtual Experiment Kit for Digital Logic Circuits Using Java Applets (자바 애플릿을 이용한 웹 기반 디지털 논리회로 가상실험키트)

  • Kim, Dong-Sik;Kim, Ki-Woon;Park, Sang-Yun;Seo, Sam-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2717-2719
    • /
    • 2003
  • In this paper, we developed an efficient virtual experiment kit with creative and interactive multimedia contents, which can be used to enhance the quality of education in the area of digital logic circuits. Since our virtual experiment kit is implemented to describe the on-campus laboratory, the learners can obtain similar experimental data through it. Also, our web-based virtual experiment kit is designed to enhance the efficiency of both the learners and the educators. The learners will be able to achieve high learning standard and the educators save time and labor. The virtual experiment is performed according to the following procedure: (1) Circuit Composition on the Bread Board (2) Applying Input Voltage (3) Output Measurements (4) Checkout of Experiment Results. Furthermore, the circuit composition on the bread board and its corresponding online schematic diagram are displayed together on the virtual experiment kit for the learner's convenience. Finally, we have obtained several affirmative effects such as reducing the total experimental hours and the damage rate for experimental equipments and increasing learning efficiencies as well as faculty productivity.

  • PDF

Bilateral Series Resonant Inverter for High Frequency Link UPS (고주파 링크 무정전 교류 전원장치를 위한 직렬 공진형 인버어터)

  • 신봉수;정용호;조규형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.7
    • /
    • pp.524-538
    • /
    • 1989
  • A new bilateral series resonant inverter and its control method are proposed. The proposed inverter consists of zero current switched cycloconverter. Output voltage is regulated by modulating the average magnitude of resonant current sinusoidally. Cycloconverter synthesizes low frequency output voltage from high frequency resonant current pulses. In the proposed inverter, bidirectional power flow in possible and isolation transformer is miniaturized. The proposed control method is verified through simulation and experiment. The proposed inverter will satisfy the small size and low cost requirements of small Uninterruptible Power Supply (UPS) of less than 1 KVA suitable for micro-computers and electronic equipments used in office and home automation.

Protection Effects of Surge Protective Devices According to Types of system Groundings (전원계통의 접지방식에 따른 서지보호기의 보호효과)

  • 이복희;이동문;강성만;이수봉
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.66-71
    • /
    • 2003
  • Electronic equipments made from integrated circuits and small-sized semiconductors is protected by surge protective devices(SPDs) such as ZnO varistors, Zener diode and gas discharge tube from lightning overvoltages. However the clamping voltage of SPDs is greatly influenced by the method of installing the SPDs. In this paper, the protective effects of SPDs according to types of system groundings were experimentally investigated. The separate grounding is a particularly undesirable way to install SPDs. The effectiveness of the common grounding point for ZnO varistors is more pronounced than that for gas discharge tubes. The common grounding at the terminal of SPDs is recommended as a best method of installing SPDs.

A Self-Powered RFID Sensor Tag for Long-Term Temperature Monitoring in Substation

  • Chen, Zhongbin;Deng, Fangming;He, Yigang;Liang, Zhen;Fu, Zhihui;Zhang, Chaolong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.501-512
    • /
    • 2018
  • Radio frequency identification (RFID) sensor tag provides several advantages including battery-less operation and low cost, which are suitable for long-term monitoring. This paper presents a self-powered RFID temperature sensor tag for online temperature monitoring in substation. The proposed sensor tag is used to measure and process the temperature of high voltage equipments in substation, and then wireless deliver the data. The proposed temperature sensor employs a novel phased-locked loop (PLL)-based architecture and can convert the temperature sensor in frequency domain without a reference clock, which can significantly improve the temperature accuracy. A two-stage rectifier adopts a series of auxiliary floating rectifier to boost its gate voltage for higher power conversion efficiency. The sensor tag chip was fabricated in TSMC $0.18{\mu}m$ 1P6M CMOS process. The measurement results show that the proposed temperature sensor tag achieve a resolution of $0.15^{\circ}C$/LSB and a temperature error of $-0.6/0.7^{\circ}C$ within the range from $-30^{\circ}C$ to $70^{\circ}C$. The proposed sensor tag achieves maximum communication distance of 11.8 m.