• 제목/요약/키워드: Electrical Units

검색결과 712건 처리시간 0.03초

가용송전용량을 고려한 각 발전회사의 발전비용 최소화 기법 개발에 관한 연구 (A Study on the Minimization of Generation Cost of an Individual Power Generation Considering Available Transfer Capability(ATC))

  • 정성원;김재현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권12호
    • /
    • pp.586-591
    • /
    • 2005
  • This paper presents a method of minimizing of generation cost on individual electrical power utility. The method is based on the Economic Dispatch (ED) and linear Available Transfer Capability (ATC). The economic dispatch redistributes the total load to individual units to minimize the generation cost without transmission network constraints. The proposed method is implemented using ATC calculated from Power Transfer Distribution Factor (PTDF) for the transmission network constraints. The performance of the proposed method has been tested for the IEEE-30 bus system. It has also been observed that the results of the proposed method is compared with that of optimal power flow.

A Family of Non-Isolated Photovoltaic Grid Connected Inverters without Leakage Current Issues

  • Ji, Baojian;Wang, Jianhua;Hong, Feng;Huang, Shengming
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.920-928
    • /
    • 2015
  • Transformerless solar inverters have a higher efficiency than those with an isolation link. However, they suffer from a leakage current issue. This paper proposes a family of single phase six-switch transformerless inverter topologies with an ac bypass circuit to solve the leakage current problem. These circuits embed two unidirectional freewheeling current units into the midpoint of a full bridge inverter, to obtain a freewheeling current path, which separates the solar panel from the grid in the freewheeling state. The freewheeling current path contains significantly fewer devices and poor performance body diodes are not involved, leading to a higher efficiency. Meanwhile, it is not necessary to add a voltage balancing control method when compared with the half bridge inverter. Simulation and experiments are provided to validate the proposed topologies.

저궤도 인공위성용 태양전력 조절기 설계 (A Design of Solar Array Regulator for LEO Satellites)

  • 박희성;차한주
    • 전기학회논문지
    • /
    • 제64권10호
    • /
    • pp.1432-1439
    • /
    • 2015
  • The solar array regulator supplies the electric power to the battery and the other units of a satellite by controlling the operating point of a solar array. In this paper, the solar array regulator composed with analog circuits is proposed. The solar array regulator has three modes. The first is a maximum power point tracking mode for harvesting the maximum photovoltaic power generation. The second is a power limitation mode which is designed for optimizing the volume and weight of the solar array regulator by preventing the excessive power conversion. The last constant voltage mode is proposed to keep the Li-Ion battery is not over-charge. The small signal model of the solar array regulator which has the reversed input and output variables in comparison with conventional converter is established and the stability is analysed. Finally, the proposed design of the solar array regulator is verified by experiments.

Optimal WAMS Configuration in Nordic Power System

  • Mohamed A.M. Hassan;Omar H. Abdalla;Hady H. Fayek;Aisha H.A. Hashim;Siti Fauziah Toha
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.130-138
    • /
    • 2023
  • The Smart grids are considered as multi-disciplinary power systems where the communication networks are highly employed. This paper presents optimal wide area measurement system (WAMS) configuration in Nordic power system. The transition from SCADA to WAMS becomes now trend in all power systems to ensure higher reliability and data visibility. The optimization applied in this research considered the geographical regions of the Nordic power system. The research considered all the devices of WAMS namely phasor measurement units (PMUs), phasor data concentrators (PDCs) and communication links. The study also presents two scenarios for optimal WAMS namely base case and N-1 contingency as different operating conditions. The result of this research presents technical and financial results for WAMS configuration in a real power system. The optimization results are performed using MATLAB 2017a software application.

Modeling and Control Design of Dynamic Voltage Restorer in Microgrids Based on a Novel Composite Controller

  • Huang, Yonghong;Xu, Junjun;Sun, Yukun;Huang, Yuxiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1645-1655
    • /
    • 2016
  • A Dynamic Voltage Restorer (DVR) model is proposed to eliminate the short-term voltage disturbances that occur in the grid-connected mode, the switching between grid-connected mode and the stand-alone mode of a Microgrid. The proposed DVR structure is based on a conventional cascaded H-bridge multilevel inverter (MLI) topology; a novel composite control strategy is presented, which could ensure the compensation ability of voltage sag by the DVR. Moreover, the compensation to specified order of harmonic is added to implement effects that zero-steady error compensation to harmonic voltage in specified order of the presented control strategy; utilizing wind turbines-batteries units as DC energy storage components in the Microgrid, the operation cost of the DVR is reduced. When the Microgrid operates under stand-alone mode, the DVR can operate on microsource mode, which could ease the power supply from the main grid (distribution network) and consequently be favorable for energy saving and emission reduction. Simulation results validate the robustness and effective of the proposed DVR system.

Thermal Unit Commitment Using Binary Differential Evolution

  • Jeong, Yun-Won;Lee, Woo-Nam;Kim, Hyun-Houng;Park, Jong-Bae;Shin, Joong-Rin
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.323-329
    • /
    • 2009
  • This paper presents a new approach for thermal unit commitment (UC) using a differential evolution (DE) algorithm. DE is an effective, robust, and simple global optimization algorithm which only has a few control parameters and has been successfully applied to a wide range of optimization problems. However, the standard DE cannot be applied to binary optimization problems such as UC problems since it is restricted to continuous-valued spaces. This paper proposes binary differential evolution (BDE), which enables the DE to operate in binary spaces and applies the proposed BDE to UC problems. Furthermore, this paper includes heuristic-based constraint treatment techniques to deal with the minimum up/down time and spinning reserve constraints in UC problems. Since excessive spinning reserves can incur high operation costs, the unit de-commitment strategy is also introduced to improve the solution quality. To demonstrate the performance of the proposed BDE, it is applied to largescale power systems of up to 100-units with a 24-hour demand horizon.

Enhanced Particle Swarm Optimization for Short-Term Non-Convex Economic Scheduling of Hydrothermal Energy Systems

  • Jadoun, Vinay Kumar;Gupta, Nikhil;Niazi, K. R.;Swarnkar, Anil
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.1940-1949
    • /
    • 2015
  • This paper presents an Enhanced Particle Swarm Optimization (EPSO) to solve short-term hydrothermal scheduling (STHS) problem with non-convex fuel cost function and a variety of operational constraints related to hydro and thermal units. The operators of the conventional PSO are dynamically controlled using exponential functions for better exploration and exploitation of the search space. The overall methodology efficiently regulates the velocity of particles during their flight and results in substantial improvement in the conventional PSO. The effectiveness of the proposed method has been tested for STHS of two standard test generating systems while considering several operational constraints like system power balance constraints, power generation limit constraints, reservoir storage volume limit constraints, water discharge rate limit constraints, water dynamic balance constraints, initial and end reservoir storage volume limit constraints, valve-point loading effect, etc. The application results show that the proposed EPSO method is capable to solve the hard combinatorial constraint optimization problems very efficiently.

아크 지락 사고에 대한 사고거리추정 및 사고판별에 관한 자동 적응자동재폐로 기법 (Adaptive AutoReclosure Technique for Fault Location Estimation and Fault Recognition about Arcing Ground Fault)

  • 김현홍;이찬주;채명석;박종배;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.283-285
    • /
    • 2005
  • This paper presents a new two-terminal numerical algorithm for fault location estimation and for faults recognition using the synchronized phasor in time-domain. The proposed algorithm is also based on the synchronized voltage and current phasor measured from the PMUs(Phasor Measurement Units) installed at both ends of the transmission lines. Also the arc voltage wave shape is modeled numerically on the basis of a great number of arc voltage records obtained by transient recorder. From the calculated arc voltage amplitude it can make a decision whether the fault is permanent or transient. In this paper the algorithm is given and estimated using DFT(Discrete Fourier Transform) and the LES(Least Error Squares Method). The algorithm uses a very short data window and enables fast fault detection and classification for real-time transmission line protection. To test the validity of the proposed algorithm, the Electro-Magnetic Transient Program(EMTP/ATP) and MATLAB is used.

  • PDF

제주도 계통에서의 풍력발전기 및 ESS를 고려한 신뢰도 평가 (Reliability Evaluation with Wind Turbine Generators and an Energy Storage System for the Jeju Island Power System)

  • 오웅진;이연찬;임진택;최재석;윤용범;장병훈;조성민
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.1-7
    • /
    • 2015
  • This paper proposes probabilistic reliability evaluation model of power system considering Wind Turbine Generator(WTG) integrated with Energy Storage System(ESS). Monte carlo sample state duration simulation method is used for the evaluation. Because the power output from WTG units usually fluctuates randomly, the power cannot be counted on to continuously satisfy the system load. Although the power output at any time is not controllable, the power output can be utilized by ESS. The ESS may make to smooth the fluctuation of the WTG power output. The detail process of power system reliability evaluation considering ESS cooperated WTG is presented using case study of Jeju island power system in the paper.

An Improved Mean-Variance Optimization for Nonconvex Economic Dispatch Problems

  • Kim, Min Jeong;Song, Hyoung-Yong;Park, Jong-Bae;Roh, Jae-Hyung;Lee, Sang Un;Son, Sung-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.80-89
    • /
    • 2013
  • This paper presents an efficient approach for solving economic dispatch (ED) problems with nonconvex cost functions using a 'Mean-Variance Optimization (MVO)' algorithm with Kuhn-Tucker condition and swap process. The aim of the ED problem, one of the most important activities in power system operation and planning, is to determine the optimal combination of power outputs of all generating units so as to meet the required load demand at minimum operating cost while satisfying system equality and inequality constraints. This paper applies Kuhn-Tucker condition and swap process to a MVO algorithm to improve a global minimum searching capability. The proposed MVO is applied to three different nonconvex ED problems with valve-point effects, prohibited operating zones, transmission network losses, and multi-fuels with valve-point effects. Additionally, it is applied to the large-scale power system of Korea. The results are compared with those of the state-of-the-art methods as well.