• Title/Summary/Keyword: Electrical Parameters

Search Result 5,751, Processing Time 0.028 seconds

Dynamic Thermal Rating of Transmission Line Based on Environmental Parameter Estimation

  • Sun, Zidan;Yan, Zhijie;Liang, Likai;Wei, Ran;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.386-398
    • /
    • 2019
  • The transmission capacity of transmission lines is affected by environmental parameters such as ambient temperature, wind speed, wind direction and so on. The environmental parameters can be measured by the installed measuring devices. However, it is impossible to install the environmental measuring devices throughout the line, especially considering economic cost of power grid. Taking into account the limited number of measuring devices and the distribution characteristics of environment parameters and transmission lines, this paper first studies the environmental parameter estimating method of inverse distance weighted interpolation and ordinary Kriging interpolation. Dynamic thermal rating of transmission lines based on IEEE standard and CIGRE standard thermal equivalent equation is researched and the key parameters that affect the load capacity of overhead lines is identified. Finally, the distributed thermal rating of transmission line is realized by using the data obtained from China meteorological data network. The cost of the environmental measurement device is reduced, and the accuracy of dynamic rating is improved.

Optimum Geometric and Electrical Parameter for minimization Torque Ripple of Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 토오크 리플 저감을 위한 기하학적인 파라미터와 전기적인 파라미터의 최적화)

  • Jung, S.I.;Choi, J.H.;Kim, Y.H.;Kim, S.;Lee, J.;Ju, M.S.;Choi, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.608-610
    • /
    • 2001
  • In this paper, 6/4 Switched Reluctance Motor(SRM) which has simple structure and little switching element is selected basic analysis model. In order to reduce torque ripple causing noise and vibration, we execute optimization of geometric parameters (stator and rotor pole arc) and electrical parameters (turn-on angle and turn-of angle) by means of combining Fletcher-Reeves's Conjugate Directions and Finite Element Method (FEM) considering driving circuits. When considering the switching condition according to inductance profile, torque characteristics is influenced by geometric and electrical parameters importantly. The pole arc and switching angle of the optimum can also obtain the low torque ripple without high currents.

  • PDF

Effects of the UV beam parameters on the fiber Bragg gratings fabricated (UV beam parameter가 광섬유 격자 형성에 미치는 영향)

  • Lim, J.H.;Cho, S.Y.;Kim, S.Y.;Park, K.N.;Lee, J.H.;Park, P.O.;Song, J.T.;Lee, K.S.;Jeon, C.O.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.665-668
    • /
    • 1997
  • We fabricated a number of optical fiber Bragg gratings by varying the UV beam parameters such as the laser energy density, pulse repetition rate and exposing time. The reflectance and the Bragg wavelength shift of the fiber Bragg gratings formed with a KrF excimer laser in real time depend strongly on the UV beam parameters. The index changes in the gratings during the exposing time are well fitted to the well known equations.

  • PDF

The Optimization of SONOSFET SPICE Parameters for NVSM Circuit Design (NVSM 회로설계를 위한 SONOSFET SPICE 파라미터의 최적화)

  • 김병철;김주연;김선주;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.347-352
    • /
    • 1998
  • In this paper, the extraction and optimization of SPICE parameters on SONOSFET for NVSM circuit design were discussed. SONOSFET devices with different channel widths and lengths were fabricated using conventional 1.2 um n-well CMOS process. And, electric properties for dc parameters and capacitance parameters were measured on wafer. SPICE parameters for the SONOSFET were extracted from the UC Berkeley level 3 model for the MOSFET. And, local optimization of Ids-Vgs curves has carried out in the bias region of subthreshold, linear, saturation respectively. Finally, the extracted SPICE parameters were optimized globally by comparing drain current (Ids), output conductance(gds), transconductance(gm) curves with theoretical curves in whole region of bias conditions. It is shown that the conventional model for the MOSFET can be applied to the SONOSFET modeling except sidewalk effect.

  • PDF

Application of Taguchi method in optimization of process parameters of ODS tungsten heavy alloys

  • Sayed, Mohamed A.;Dawood, Osama M.;Elsayed, Ayman H.;Daoush, Walid R.
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.79-91
    • /
    • 2017
  • In the present work, a design of experiment (DOE) technique using Taguchi method, has been applied to optimize the properties of ODS tungsten heavy alloys(WHAs). In this work Taguchi method involves nine experiments groups for four processing parameters (compaction pressure, sintering temperature, binding material type, and oxide type) with three levels was implemented. The signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were employed to obtain the optimal process parameter levels and to analyze the effect of these parameters on density, electrical conductivity, hardness and compressive strength values. The results showed that all the chosen factors have significant effects on all properties of ODS tungsten heavy alloys samples. The density, electrical conductivity and hardness increases with the increase in sintering temperature. The analysis of the verification experiments for the physical properties (density and Electrical conductivity) has shown that Taguchi parameter design can successfully verify the optimal parameters, where the difference between the predicted and the verified values of relative density and electrical conductivity is about 1.01% and 1.15% respectively.

Diagnosis of Fault and Abnormal Conditions in a Single-Phase Transformer Using S-parameter Measurement (S파라미터를 이용한 단상 변압기의 이상 상태 진단에 대한 연구)

  • Kim, Jeongeun;Kim, Kwangho;Nah, Wansoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1344-1352
    • /
    • 2018
  • In this paper, we propose a two-port S-parameter data to diagnose the fault conditions of a single-phase transformer. Using the S-parameters we can measure the reflection and transmission characteristics of signal power at the port of a transformer, which can also be converted into ABCD parameters and Z parameters through a well-known conversion formulas. Transformer fault diagnoses can be performed based on the intuitive and qualitative/quantitative characteristics of the these parameters. In addition, we can obtain wide frequency characteristics at the primary and secondary sides of the transformer, which can be used to get time domain responses using the inverse Fourier transformation with some specific input waveform. In order to verify the effectiveness of the proposed method, the fault conditions were analyzed in simulation and experiment for 3 kVA single phase transformer with 15: 5 turns ratio, and the validity of the proposed method was verified.

Modeling of a Building System and its Parameter Identification

  • Park, Herie;Martaj, Nadia;Ruellan, Marie;Bennacer, Rachid;Monmasson, Eric
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.975-983
    • /
    • 2013
  • This study proposes a low order dynamic model of a building system in order to predict thermal behavior within a building and its energy consumption. The building system includes a thermally well-insulated room and an electric heater. It is modeled by a second order lumped RC thermal network based on the thermal-electrical analogy. In order to identify unknown parameters of the model, an experimental procedure is firstly detailed. Then, the different linear parametric models (ARMA, ARX, ARMAX, BJ, and OE models) are recalled. The parameters of the parametric models are obtained by the least square approach. The obtained parameters are interpreted to the parameters of the physically based model in accordance with their relationship. Afterwards, the obtained models are implemented in Matlab/Simulink(R) and are evaluated by the mean of the sum of absolute error (MAE) and the mean of the sum of square error (MSE) with the variable of indoor temperature of the room. Quantities of electrical energy and converted thermal energy are also compared. This study will permit a further study on Model Predictive Control adapting to the proposed model in order to reduce energy consumption of the building.

Influence of the Electrical Parameters on the Fabrication of Oxide Layers on the Surface of Al-1050 by a Plasma Electrolytic Process (플라즈마 전해 산화법에 의한 Al-1050 표면상의 산화막 제조에 미치는 전기적 변수의 영향)

  • Nam, Kyung-Su;Song, Jeong-Hwan;Lim, Dae-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.498-504
    • /
    • 2012
  • Oxide layers were prepared by an environmentally friendly plasma electrolytic oxidation (PEO) process on an Al-1050 substrate. The electrolyte for PEO was an alkali-based solution with $Na_2SiO_3$ (8 g/L) and NaOH (3 g/L). The influence of the electrical parameters on the phase composition, microstructure and properties of the oxide layers formed by PEO were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The voltage-time responses were recorded during various PEO processes. The oxides are composed of two layers and are mainly made of ${\alpha}$-alumina, ${\gamma}$-alumina and mullite phases. The proportion of each phase depends on various electrical parameters. It was found that the surface of the oxides produced at a higher current density and Ia/Ic ratio shows a more homogeneous morphology than those produced with the electrical parameters of a lower current density and lower Ia/Ic ratio. Also, the oxide layers formed at a higher current density and higher Ia/Ic ratio show high micro-hardness levels.

Effect of Circuit Parameters on Stability of Voltage-fed Buck-Boost Converter in Discontinuous Conduction Mode

  • Feng, Zhao-He;Gong, Ren-Xi;Wang, Qing-Yu
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1283-1289
    • /
    • 2014
  • The state transition matrix are obtained by solving state equations in terms of Laplace inverse transformation and Cayley-Hamilton theorem, and an establishment of a precise discrete-iterative mapping of the voltage-fed buck-boost converter operating in discontinuous conduction mode is made. On the basis of the mapping, the converter bifurcation diagrams and Lyapunov exponent diagrams with the input voltage, the resistance, the inductance and the capacitance as the bifurcation parameters are obtained, and the effect of the parameters on the system stability is deeply studied. The results obtained show that they have a great influence on the stability of the system, and the general trend is that the increase of either the voltage-fed coefficient, input voltage or the load resistance, or the decrease of the filtering inductance, capacitance will make the system stability become poorer, and that all the parameters have a critical value, and when they are greater or less than the values, the system will go through stable 1T orbits, stable 2T orbits, 4T orbits, 8T orbits and eventually approaches chaos.

Identification of the Mechanical Resonances of Electrical Drives for Automatic Commissioning

  • Pacas Mario;Villwock Sebastian;Eutebach Thomas
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.198-205
    • /
    • 2005
  • The mechanical system of a drive can often be modeled as a two- or three-mass-system. The load is coupled to the driving motor by a shaft able to perform torsion oscillations. For the automatic tuning of the control, it is necessary to know the mathematical description of the system and the corresponding parameters. As the manpower and setup-time necessary during the commissioning of electrical drives are major cost factors, the development of self-operating identification strategies is a task worth pursuing. This paper presents an identification method which can be utilized for the assisted commissioning of electrical drives. The shaft assembly can be approximated as a two-mass non-rigid mechanical system with four parameters that have to be identified. The mathematical background for an identification procedure is developed and some important implementation issues are addressed. In order to avoid the excitation of the system with its natural resonance frequency, the frequency response can be obtained by exciting the system with a Pseudo Random Binary Signal (PRBS) and using the cross correlation function (CCF) and the auto correlation function (ACF). The reference torque is used as stimulation and the response is the mechanical speed. To determine the parameters, especially in advanced control schemes, a numerical algorithm with excellent convergence characteristics has also been used that can be implemented together with the proposed measurement procedure in order to assist the drive commissioning or to achieve an automatic setting of the control parameters. Simulations and experiments validate the efficiency and reliability of the identification procedure.