DOI QR코드

DOI QR Code

Influence of the Electrical Parameters on the Fabrication of Oxide Layers on the Surface of Al-1050 by a Plasma Electrolytic Process

플라즈마 전해 산화법에 의한 Al-1050 표면상의 산화막 제조에 미치는 전기적 변수의 영향

  • Nam, Kyung-Su (Department of Materials Engineering, Graduate School of PaiChai University) ;
  • Song, Jeong-Hwan (Department of Information and Electronic Materials Engineering, PaiChai University) ;
  • Lim, Dae-Young (Department of Information and Electronic Materials Engineering, PaiChai University)
  • 남경수 (배재대학교 재료공학과) ;
  • 송정환 (배재대학교 정보전자소재공학과) ;
  • 임대영 (배재대학교 정보전자소재공학과)
  • Received : 2012.02.28
  • Accepted : 2012.07.11
  • Published : 2012.11.30

Abstract

Oxide layers were prepared by an environmentally friendly plasma electrolytic oxidation (PEO) process on an Al-1050 substrate. The electrolyte for PEO was an alkali-based solution with $Na_2SiO_3$ (8 g/L) and NaOH (3 g/L). The influence of the electrical parameters on the phase composition, microstructure and properties of the oxide layers formed by PEO were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The voltage-time responses were recorded during various PEO processes. The oxides are composed of two layers and are mainly made of ${\alpha}$-alumina, ${\gamma}$-alumina and mullite phases. The proportion of each phase depends on various electrical parameters. It was found that the surface of the oxides produced at a higher current density and Ia/Ic ratio shows a more homogeneous morphology than those produced with the electrical parameters of a lower current density and lower Ia/Ic ratio. Also, the oxide layers formed at a higher current density and higher Ia/Ic ratio show high micro-hardness levels.

Keywords

References

  1. W. B. Xue, Ch.wang, Y. L. Li, Z. h.W. Deng, R.Y. Chen, and T. H. Zhang, "Effect of Microarc Discharge Surface Treatment on the Tensile Properties of Al-Cu-Mg alloy," Mater. Lett., 56 737-43 (2002). https://doi.org/10.1016/S0167-577X(02)00605-5
  2. S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya, S. L. Sinbrukhov, A. N. Kovryanov, T. M. Scorobogatova, and P. S. Gordienko, "Production of Hard and Heat-resistant Coatings on Aluminum using a Plasma Micro-discharge," Surf. Coat. Technol., 123 24-8 (2000). https://doi.org/10.1016/S0257-8972(99)00421-1
  3. B. Y. Kim, D. Y. Lee, Y. N. Kim, M. S. Jeon, W. S. You, and K. Y. Kim, "Analysis of Oxide Coatings Formed on Al1050 Alloy by Plasma Electrolytic Oxidation(in Korean)," J. Kor. Ceram. Soc., 46 [3] 295-300 (2009). https://doi.org/10.4191/KCERS.2009.46.3.295
  4. G. K.Won and T. K.Choi, Anode Oxidation Technology (in Korean); Vol. 2, pp. 3-16, DonghHwaTechnology Publishing Co, Gyeonggi-do, 2008.
  5. F. Mecuson, T. Czerwiec, T. Belmonte, L. Dujardin, A. Viola, and G. Henrion, "Diagnostics of an Electrolytic Microarc Process for Aluminum Alloy Oxidation," Surf. Coat. Technol., 200 804-8 (2005). https://doi.org/10.1016/j.surfcoat.2005.01.076
  6. W. Xue, Z. Deng, and Y. Lai, R. Chen, "Analysis of Phase Distribution for Ceramic Coatings Formed by Microarc Oxidation on Aluminum Alloy," J. Am. Ceram. Soc., 81 [5] 1365-68 (1998).
  7. A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, A. Leyland, A. Plikington, and A. Matthews, "Discharge Characterization in Plasma Electrolytic Oxidation of Aluminum," J. Phys., D. Appl. Phys., 36 2110-20 (2003). https://doi.org/10.1088/0022-3727/36/17/314
  8. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, "Plasma Electrolysis for Surface Engineering," Surf. Coat. Technol., 122 73-93 (1999). https://doi.org/10.1016/S0257-8972(99)00441-7
  9. R. C. Barik, J. A. Wharton, R. J. K. Wood, K. R. Stokes, and R. L. Jones, "Corrosion, Erosion and Erosion-corrosion Performance of Plasma Electrolytic Oxidation (PEO) Deposited $Al_2O_3$ Coatings," Surf. Coat. Technol., 199 158-67 (2005). https://doi.org/10.1016/j.surfcoat.2004.09.038
  10. G. Lv, W. Gu, H. Chen, W. Feng, M. L. Khosa, L. Li, E. Niu, G. Zhang, and S.-Z. Yang, "Characteristic of Ceramic Coatings on Aluminum by Plasma Electrolytic Oxidation in Silicate and Phosphate," Appl. Surf. Sci., 253 2947-52 (2006). https://doi.org/10.1016/j.apsusc.2006.06.036
  11. J. Tian, Lou, Sh. K. Qi, and X. J. Sun, "Structure and Antiwear Behavior of Micro-arc Oxidized Coatings on Aluminum Alloy," Surf. Coat. Technol., 154 1-7 (2002). https://doi.org/10.1016/S0257-8972(01)01671-1
  12. B. H. Long, H. H. Wu, B.Y. Long, J. B. Wang, N. D. Wang, X. Y. Lu, Z. S. Jin, and Y. Z. Bai, "Characteristics of Electric Parameters in Aluminum Alloy MAO Coating Process," J. Phys. D: Appl. Phys., 38 3491-96 (2005). https://doi.org/10.1088/0022-3727/38/18/025
  13. S. Xin, L. Song, R. Zhao, and X. Hu, "Influence of Cathodic Current on Composition, Structure and Properties of $Al_2O_3$ Coatings on Aluminum Alloy Prepared by Micro-arc Oxidation Process," Thin Solid Films, 515 326-32 (2006). https://doi.org/10.1016/j.tsf.2005.12.087
  14. T. B. Wei, F. Y. Yan, and J. Tian, "Characterization and Wear- and Corrosion-resistance of Microarc Oxidation Ceramic Coatings on Aluminum Alloy," J. Alloys Compd., 389 169-76 (2005). https://doi.org/10.1016/j.jallcom.2004.05.084

Cited by

  1. Al-1050 위에 플라즈마 전해 산화법으로 형성된 Al2O3 피막 특성에 미치는 듀티사이클의 영향 vol.50, pp.2, 2012, https://doi.org/10.4191/kcers.2013.50.2.108
  2. 플라즈마 전해 산화 처리조건에 따른 다이캐스트 AZ91D Mg 합금 위에 제조된 산화피막 특성 vol.29, pp.10, 2012, https://doi.org/10.3740/mrsk.2019.29.10.609