• Title/Summary/Keyword: Electrical Heating System

Search Result 408, Processing Time 0.021 seconds

Sintering and Electrical Properties of Cr-doped ZnO-Bi2O3-Sb2O3 (Cr을 첨가한 ZnO-Bi2O3-Sb2O3계의 소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.942-948
    • /
    • 2010
  • In this study we aims to examine the effects of 0.5 mol% $Cr_2O_3$ addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and interface state levels of ZnO-$Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5, 1.0, and 2.0) systems (ZBS). The samples were prepared by conventional ceramic process, and characterized by XRD, density, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. The sintering and electrical properties of Cr-doped ZBS (ZBSCr) systems were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed more than $100^{\circ}C$ lowered on heating in ZBS (Sb/Bi=1.0) by Cr doping. The densification of ZBSCr (Sb/Bi=0.5) system was retarded to $800^{\circ}C$ by unknown Bi-rich phase produced at $700^{\circ}C$. Pyrochlore on cooling was reproduced in all systems. And $Zn_7Sb_2O_{12}$ spinel ($\alpha$-polymorph) and $\delta-Bi_2O_3$ phase were formed by Cr doping. In ZBSCr, the varistor characteristics were not improved drastically (non-linear coefficient $\alpha$ = 7~12) and independent on microstructure according to Sb/Bi ratio. Doping of $Cr_2O_3$ to ZBS seemed to form $Zn_i^{..}$(0.16 eV) and $V^{\bullet}_o$ (0.33 eV) as dominant defects. From IS & MS, especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one (1.1 eV) and electrically inactive intergranular one (0.95 eV) with temperature.

Nonstoichiometry and Magnetic Property of the $Nd_{-x}Sr_{x}CoO_{3-y}$ System ($Nd_{-x}Sr_{x}CoO_{3-y}$계의 비화학양론 및 자기적 특성)

  • Chul Hyun Yo;Kwon Sun Roh;Sung Joo Lee;Kyu Hong Kim;Eung Ju Oh
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.211-218
    • /
    • 1991
  • A series of samples in the $Nd_{-x}Sr_{x}CoO_{3-y}$ system (x = 0.00, 0.25, 0.50, 0.75 and 1.00) have been produced by heating the reactants at 1200${\circ}$C under atmospheric pressure. The solid solutions were analysed by X-ray diffraction spectra, thermal analysis, and SEM micrographs. X-ray powder diffraction assigns the compositions of x = 0.00, 0.25, 0.50 and 0.75 to the cubic system and the composition of x = 1.00 to the orthorhombic system. The reduced lattice volume is increased with increasing x values in the system. The mole ratio of $Co^{4+}$ or ${\tau}$ values are determined by the Iodometric titration method and are maximum at the composition of x = 0.50. The magnetic measurement shows that a ferromagnetism is appeared in the compositions of x = 0.00, 0.25, 0.50 and 0.75 and then an antiferromagnetism in the composition of x = 1.00. The measurement of the electrical conductivity shows that the semiconductivity is appeared in the composition of x = 0.00, 0.25 and 1.00 and the metallic conductivity in the composition of x = 0.50 and 0.75. The magnetic and electrical properties of the samples are discussed with the nonstoichiometric chemical formulas.

  • PDF

The Research for the Change of Load Demand in Wintertime by the Influence of a Climate (기후의 영향에 따른 동절기 전력수요 변화에 대한 연구)

  • Ahn, Dae-Hoon;Song, Kwang-Heon;Choi, Eun-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.47-54
    • /
    • 2009
  • These clays, because of world economy recession, exports decreased rapidly and manufacturing industry growth fell into negative. Industrial power consumption has been reduced about 7[%] that forms 53[%] of total load demand in Korea. And also, daily load pattern has been changed in several ways because of power consumption decrease influenced by domestic demand recession and heating power load decreased by the rise in temperature. This research analyzes, by analyzing maximum load demand, average load demand, load pattern based on relative factor, and load sensitiveness in accordance with temperature, that maximum load demand is more sensitive to atmospheric temperature than GDP growth rate and average load demand tends to be reduced according to GDP growth rate. I suppose KPX could operate the network system economically and safely by forecasting load demand in winter and summer seasons based on the results.

Growth of Nano Structure Bi2Te3 Films using Modified MOCVD Technique (개조된 MOCVD 법에 의한 성장 나노 구조 Bi2Te3 열전필름)

  • You, Hyun-Woo;Jung, Kyoo-Ho;Yim, Ju-Hyuk;Kim, Kwang-Chon;Park, Chan;Kim, Jin-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.497-501
    • /
    • 2010
  • Nano structure $Bi_2Te_3$ films were deposited on (100) GaAs substrates using a modified MOCVD system and the effect of growth parameters on the structural properties were investigated. Different from conventional MOCVD systems, our reactor consist of pressure control unit and two heating zones ; one for formation of nano-sized particles and the other for the growth of nano particles on substrates. By using this instrument we successfully grow $Bi_2Te_3$ films with nano-grain size. The film grown at high reactor pressure has large grain size. On the contrast, the grain size decreases with a decrease in pressure of the reactor. Here, we introduce new growth methods of nano-grain structured $Bi_2Te_3$ films for high thermoelectric figure of merit.

Improvement of Repeatability during Dielectric Etching by Controlling Upper Electrode Temperature (Capacitively Coupled Plasma Source를 이용한 Etcher의 상부 전극 온도 변화에 따른 Etch 특성 변화 개선)

  • Shin, Han-Soo;Roh, Yong-Han;Lee, Nae-Eung
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.322-326
    • /
    • 2011
  • Etch process of silicon dioxide layer by using capacitively coupled plasma (CCP) is currently being used to manufacture semiconductor devices with nano-scale feature size below 50 nm. In typical CCP plasma etcher system, plasmas are generated by applying the RF power on upper electrode and ion bombardment energy is controlled by applying RF power to the bottom electrode with the Si wafer. In this case, however, etch results often drift due to heating of the electrode during etching process. Therefore, controlling the temperature of the upper electrode is required to obtain improvement of etch repeatability. In this work, we report repeatability improvement during the silicon dioxide etching under extreme process conditions with very high RF power and close gap between upper and bottom electrodes. Under this severe etch condition, it is difficult to obtain reproducible oxide etch results due to drifts in etch rate, critical dimension, profile, and selectivity caused by unexpected problems in the upper electrode. It was found that reproducible etch results of silicon dioxide layer could be obtained by controlling temperature of the upper electrode. Methods of controlling the upper electrode and the correlation with etch repeatability will be discussed in detail.

LFG Utilization in Hong Kong (Case study of the Shuen Wan and Urban Landfills)

  • Lloyd, Bryce;Chan, Louis;Nardelli, Ray;Sullivan, Kevin
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2001.05b
    • /
    • pp.85-91
    • /
    • 2001
  • This paper provides a case study of landfill gas (LFG) utilization fer direct use as process fuel, and for electrical power generation at restored landfills in the Hong Kong Special Administrative Region of China (HKSAR). The paper specifically covers the LFG utilization schemes, which are required under landfill restoration contracts at the Shuen Wan and Urban Landfills. These contracts provide for the restoration and aftercare of six landfills, and are administered by the Environmental Protection Department (EPD) of the Hong Kong Government. The LFG utilization scheme at the Shuen Wan Landfill incorporates the direct use of LFG by compressing and dehumidifying the LFG prior to conveyance through a 1.6-kilometer (1-mile) pipeline. The pipeline provides an alternate fuel source to naphtha during process heating for gas production at the Tai Po Gas Production Plant of the Hong Kong and China Gas Limited (HKCC). The LFG utilization scheme at the Jordan Valley Landfill (one of the Urban Landfills) beneficially uses the LFG as fuel for electrical power generation with reciprocating internal combustion engines. The LFG is compressed, cooled, and filtered prior to delivery to two engine/generator sets. This system provides power to operate the leachate pre-treatment plant, which processes leachate from all of the Urban Landfill sites. The case study will examine the technical and non-technical considerations, including harriers, for developing, designing and implementing the LFG utilization projects in Hong Kong. Specific regulatory considerations and external governmental agency approvals are discussed, including the requirement to register as a gas-producing utility. While the paper focuses on LFG utilization applications in Hong Kong, many of the considerations discussed are also applicable to development of LFG utilization in other regions of Asia.

  • PDF

A Study on the Performance Comparisons of Air Type BIPVT Collector Applied on Roofs and Facades (건물 적용 유형별 공기식 BIPVT 유닛의 전기 및 열성능 비교에 관한 연구)

  • Kang, Jun-Gu;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.56-62
    • /
    • 2010
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. PV/thermal collectors, or more generally known as PVT collectors, are devices that operate simultaneously to convert solar energy from the sun into two other useful energies, namely, electricity and heat. This paper compares the experimental performance of BIPVT((Building-Integrated Photovoltaic Thermal) collectors that applied on building roof and facade. There are four different cases: a roof-integrated PVT type and a facade-integrated PVT type, the base models with an air gap between the PV module and the surface, and the improved models for each types with aluminum fins attached to the PV modules. The accumulated thermal energy of the roof-integrated type was 15.8% higher than the facade-integrated regardless of fin attachment. The accumulated electrical energy of the roof-integrated type was 7.6% higher, compared to that of the facade-integrated. The efficiency differences among the collectors may be due to the fact that the pins absorbed heat from the PV module and emitted it to air layer.

A Study on Characteristic Analysis of AC to AC Current-Fed Type High Frequency Resonant Inverter with High Power Factor (고역율 AC/AC 전류형 고주파 공진 인버터의 특성해석에 관한 연구)

  • Kim, Jong-Hae;Won, Jae-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.16-28
    • /
    • 2014
  • This paper presents a novel high-power-factor circuit topology of AC to AC current-fed type high frequency resonant inverter which includes the function of power factor correction(PFC) in the proposed inverter to operate the AC input block with high power factor. The proposed circuit topology of AC to AC current fed type high resonant inverter removes DC link electrolytic capacitor and has also the one of power factor correction(PFC) in the inverter circuit without an additional PFC circuit since the input current by constituting it in parallel as an unit inverter, which assumes the class-E high frequency resonant inverter of conventional current-fed type, flows in the form of the resultant current flowing through each constant current reactor($L_{d1}$, $L_{d2}$). The circuit analysis of proposed inverter is generally described by adopting the normalized parameters and the evaluation of its operating characteristics are conducted by using the parameters such as the ratio of switching and resonant frequency(${\mu}$), coupling coefficient(k) and so on. An example of procedure for circuit design based on the characteristic values obtained from the theoretical analysis is presented. To confirm the validity of the theoretical analysis, the experimental results are also presented. In the future, the proposed inverter shows it can be practically used as power supply system for induction heating application, DC-DC converter etc.

Design of Domestic Induction Cooker based on Optimal Operation Class-E Inverter with Parallel Load Network under Large-Signal Excitation

  • Charoenwiangnuea, Patipong;Ekkaravarodome, Chainarin;Boonyaroonate, Itsda;Thounthong, Phatiphat;Jirasereeamornkul, Kamon
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.892-904
    • /
    • 2017
  • A design of a Class-E inverter with only one inductor and one capacitor is presented. It is operated at the optimal operation mode for domestic cooker. The design principle is based on the zero-voltage derivative switching (ZVDS) of the Class-E inverter with a parallel load network, which is a parallel resonant equivalent circuit. An induction load characterization is obtained from a large-signal excitation test bench, which is the key to an accurate design of the induction cooker system. Consequently, the proposed scheme provides a more systematic, simple, accurate, and feasible solution than the conventional quasi-resonant inverter analysis based on series load network methodology. The derivative of the switch voltage is zero at the turn-on transition, and its absolute value is relatively small at the turn-off transition. Switching losses and noise are reduced. The parameters of the ZVDS Class-E inverter for the domestic induction cooker must be selected properly, and details of the design of the components of this Class-E inverter need to be addressed. A 1,200 W prototype is designed and evaluated to verify the validation of the proposed topology.

Building Energy Savings due to Incorporated Daylight-Glazing Systems (통합 채광시스템의 건물 냉난방 에너지 성능평가)

  • Kim, Jeong-Tai;Ahn, Hyun-Tae;Kim, Gon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • The quantity of light available for a space can be translated in term of the amount of energy savings through a process of a building energy simulation. To get significant energy savings in general illumination, the electric lighting system must be incorporated with a daylight - activated dimmer control. A prototype configuration of an once interior has been established and the integration between the building envelope and lighting and HVAC systems is evaluated based on computer modeling of a lighting control facility. First of all, an energy-efficient luminaire system is designed and the lighting analysis program, Lumen-Micro 2000 predicts the optimal layout of a conventional fluorescent lighting future to meet the designed lighting level and calculates unit power density, which translates the demanded met of electric lighting energy. A dimming control system integrated with the contribution of daylighting has been applied to the operating of the artificial lighting. Annual cooling load due to lighting and the projecting saving amount of cooling load due to daylighting under overcast diffuse sky m evaluated by computer software ENER-Win. In brief, the results from building energy simulation with measured daylight illumination levels and the performance of lighting control system indicate that daylighting can save over 70 percent of the required energy for general illumination in the perimeter zones through the year A 25[%] of electric energy for cooling and almost all off heating energy may be saved by dimming and turning off the luminaires in the perimeter zones.