DOI QR코드

DOI QR Code

Growth of Nano Structure Bi2Te3 Films using Modified MOCVD Technique

개조된 MOCVD 법에 의한 성장 나노 구조 Bi2Te3 열전필름

  • You, Hyun-Woo (Department of Electronic Materials Center Materials Research Center, Korea Institute of Science and Technology(KIST)) ;
  • Jung, Kyoo-Ho (Department of Electronic Materials Center Materials Research Center, Korea Institute of Science and Technology(KIST)) ;
  • Yim, Ju-Hyuk (Department of Electronic Materials Center Materials Research Center, Korea Institute of Science and Technology(KIST)) ;
  • Kim, Kwang-Chon (Department of Electronic Materials Center Materials Research Center, Korea Institute of Science and Technology(KIST)) ;
  • Park, Chan (Department of Materials Science and Engineering, Seoul National University) ;
  • Kim, Jin-Sang (Department of Electronic Materials Center Materials Research Center, Korea Institute of Science and Technology(KIST))
  • 유현우 (한국과학기술연구원 재료연구본부 전자재료센터) ;
  • 정규호 (한국과학기술연구원 재료연구본부 전자재료센터) ;
  • 임주혁 (한국과학기술연구원 재료연구본부 전자재료센터) ;
  • 김광천 (한국과학기술연구원 재료연구본부 전자재료센터) ;
  • 박찬 (서울대학교 재료공학부) ;
  • 김진상 (한국과학기술연구원 재료연구본부 전자재료센터)
  • Received : 2010.03.19
  • Accepted : 2010.05.23
  • Published : 2010.06.01

Abstract

Nano structure $Bi_2Te_3$ films were deposited on (100) GaAs substrates using a modified MOCVD system and the effect of growth parameters on the structural properties were investigated. Different from conventional MOCVD systems, our reactor consist of pressure control unit and two heating zones ; one for formation of nano-sized particles and the other for the growth of nano particles on substrates. By using this instrument we successfully grow $Bi_2Te_3$ films with nano-grain size. The film grown at high reactor pressure has large grain size. On the contrast, the grain size decreases with a decrease in pressure of the reactor. Here, we introduce new growth methods of nano-grain structured $Bi_2Te_3$ films for high thermoelectric figure of merit.

Keywords

References

  1. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47,631 (1993).
  2. M. S. Sander, R. Gronsky, T. Snads, and A. M. Stacy, Chem. Mater. 15, 335 (2003). https://doi.org/10.1021/cm0207604
  3. H. Zou, D. M. Powe, and G. Min, J. Crystal Growth222, 82 (2001). https://doi.org/10.1016/S0022-0248(00)00922-2
  4. C. Shafai and M. J. Brett, J. Vac. Sci. Technol. A 15,2798 (1997). https://doi.org/10.1116/1.580826
  5. T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science 297, 2229 (2002). https://doi.org/10.1126/science.1072886
  6. S. Iijima, Nature 354, 56 (1991). https://doi.org/10.1038/354056a0
  7. R. Venkatasubramanian, Phys. Rev. B 61, 3091 (2000). https://doi.org/10.1103/PhysRevB.61.3091
  8. J.-H. Kim, D.-Y. Jeong, B.-K. Ju, and J.-S. Kim, J. Appl. Phys. 100, 123501-1 (2006). https://doi.org/10.1063/1.2399305
  9. A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, and A. Boyer, Thin Solid Films 315, 99 (1998). https://doi.org/10.1016/S0040-6090(97)00792-X