• Title/Summary/Keyword: Electrical Contact

Search Result 2,093, Processing Time 0.03 seconds

The effects of performing a one-legged bridge with use of a sling on trunk and gluteal muscle activation

  • Cho, Minkwon;Bak, Jongwoo;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.2
    • /
    • pp.70-77
    • /
    • 2016
  • Objective: The purpose of this study was to compare the activation of trunk and gluteal muscles during bridge exercises with a sling (BS), single-legged bridge exercise with a sling (SBS), single-legged bridge exercise (SB), and general bridge exercise (GB). Design: Cross-sectional study. Methods: Twenty-five healthy participants (19 males and 6 females, aged 27.8 [4.78]) voluntarily participated in this study. In the bridging exercise, each subject lifted their pelvis with their legs and feet in contact with the sling or normal surface. The electrical activities of the erector spinae (ES), gluteus maximus (GM), external oblique (EO), and internal oblique (IO) muscles during the bridging exercises on the 2 surfaces were measured using surface electromyography. Subjects practiced each of the four bridge condition three times in random order and average values were obtained. Results: On the ipsilateral side, activities of the IO, EO, and ES during SBS was significantly higher than those during BS, SB, and GB (p<0.05). Activities of the IO and EO during SB was significantly higher than those during BS and GB (p<0.05). On the contralateral side, activities of the GM and EO during SB and SBS was significantly higher than that during BS and GB (p<0.05). These results verify the theory that the use of sling and single leg lift increases the activation trunk and gluteal muscles during bridging exercises. Conclusions: The single-legged bridge exercise with a sling can be recommended as an effective method to facilitate trunk and gluteal muscle activities.

A FINITE ELEMENT AND STRAIN GAUGE ANALYSIS ON THE DISPLACEMENT OF CRANIOFACIAL COMPLEX WITH CERVICAL HEADGEAR (경부고정(頸部固定) headgear 사용시(使用時) 안면두개골(顔面頭蓋骨)의 변위(變位)에 관(關)한 장력계측법(張力計測法) 및 유한요소법적(有限要素法的) 연구(硏究))

  • Kim, Hyun-Soon;Nahm, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.17 no.2
    • /
    • pp.185-200
    • /
    • 1987
  • This paper was undertaken to observe the displacement of craniofacial complex with cervical headgear and to compare narrowing or widening effect of palate by use of contraction or expansion face-bow, respectively. The 3-dimensional finite element method(FEM) was used for a mathematical model composed of 597 nodes and 790 elements and an electrical resistance strain gauge investigation was performed to validate the finite element model. The outer bow of cervical headgear was adjusted to be placed below the occlusal plane by $25^{\circ}$ and met the midsagittal plane by $40^{\circ}$, and was loaded 1kg on each right and left hook toward posterior direction. The results were as follows 1. Generally, the maxillary teeth and facial bone were displaced in posterior, medial and downward direction. 2. It was the maxillary 2nd bicuspid that moved bodily. 3. The craniofacial complex rotated in a clockwise direction around the rotating axis which lay from the most posterior and lowest point connecting nasal crest of maxillary bone and vomer, progressively toward a more posterior, lateral and upward direction, anterior and upper area of pterygomaxillary fissure, base of medial pterygoid plate and laterally to the contact area of zygomatic arch with squamous part of temporal bone. 4. No contraction effect was observed by contraction face-bow when compared to the standard face-bow. 5. In case of expansion face-bow, the areas of maxillary 2nd bicuspid, molars and palate were expanded remarkably.

  • PDF

Electrochemical Characteristics of Carbon Coated SnO2-SiO2 Anode Materials (탄소 피복된 SnO2-SiO2 음극활물질의 전기화학적 특성)

  • Jeong, Gu-Hyun;Na, Byung-Ki
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • Tin-based materials for lithium ion battery have been proposed as new anode candidates owing to their higher specific capacity and relatively high lithium insertion potential. Tin-based materials have been extensively studied as possible replacements for carbon anodes in lithium ion batteries. However, the large volume expansion results in severe particle cracking with loss of electrical contact, giving irreversible capacity losses which prevent the widespread use of tin-based materials in lithium batteries. So remaining studies of tin-based materials are alleviating volume expansion and improving cycle performance. In this work, $SnO_2-SiO_2$ composites were manufactured with sol-gel method to overcome their volume expansion. Carbon was coated with 10 vol% propylene gas. The characteristics of active material and the effect of heat treatment were investigated with TG/DTA, XRD, SEM and FT-IR. Electrochemical characteristics of these composites were measured with CR2032 type coin cells. Carbon coated $SnO_2-SiO_2$at $300^{\circ}C$ heat treatment showed the best electrochemical performance.

Impact and Bending Characteristics of Dual Band Composite Antennas (복합 구조 이중대역 안테나의 충격 및 굽힘 특성)

  • Shin, Dong-Sik;Kim, Jin-Yul;Park, Wee-Sang;Hwang, Woon-Bong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.35-40
    • /
    • 2011
  • We have studied the impact and bending characteristics of a dual band antenna (1.575, 2.645 GHz) with composite sandwich construction. Mechanical performance of the antenna can be improved by reinforcing the antenna by sandwiching the planar antenna with layers of carbon fiber-reinforced plastic(CFRP) and glass fiber-reinforced plastic(GFRP) using an adhesive film. According to the ASTM D7137, ASTM C393 and MIL-STD401B, impact and bending test were performed and the S-parameters and gains of the antenna were measured in order to verify electrical and mechanical performance. The maximum contact load and the bending load of the antenna are 4 kN and 400 N and gains of the antenna are 6 dBi and 4.6 dBi in the GPS and DMB bands, respectively. The proposed antenna structure can be applied to surfaces of vehicles.

Epitaxial Growth of Boron-doped Si Film using a Thin Large-grained Si Seed Layer for Thin-film Si Solar Cells

  • Kang, Seung Mo;Ahn, Kyung Min;Moon, Sun Hong;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • We developed a method of growing thin Si film at $600^{\circ}C$ by hot wire CVD using a very thin large-grained poly-Si seed layer for thin-film Si solar cells. The seed layer was prepared by crystallizing an amorphous Si film by vapor-induced crystallization using $AlCl_3$ vapor. The average grain size of the p-type epitaxial Si layer was about $20{\mu}m$ and crystallographic defects in the epitaxial layer were mainly low-angle grain boundaries and coincident-site lattice boundaries, which are special boundaries with less electrical activity. Moreover, with a decreasing in-situ boron doping time, the mis-orientation angle between grain boundaries and in-grain defects in epitaxial Si decreased. Due to fewer defects, the epitaxial Si film was high quality evidenced from Raman and TEM analysis. The highest mobility of $360cm^2/V{\cdot}s$ was achieved by decreasing the in-situ boron doping time. The performance of our preliminary thin-film solar cells with a single-side HIT structure and $CoSi_2$ back contact was poor. However, the result showed that the epitaxial Si film has considerable potential for improved performance with a reduced boron doping concentration.

Electromagnetic-structure Co-simulation Analysis of Aluminum Pipe with Electromagnetic Forming according to Temperature (전자기 성형 시 온도에 따른 알루미늄 파이프의 전자기-구조 연동해석)

  • Kang, Hanbin;Tak, Seungmin;Baek, Inseok;Choi, Jinkyu;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.64-69
    • /
    • 2018
  • The high-velocity electromagnetic forming (EMF) process is based on the Lorentz force and the energy of the magnetic field. The advantages of EMF include improved formability, wrinkle reduction, and non-contact forming. In this study, the electromagnetic-structural interlocking analysis was performed in order to analyze the moldability of aluminum pipe using electromagnetic molding. The magnetic flux density was decreased due to increasing electrical resistance as the temperature increased, and the stress-strain curve decreased. The higher the temperature, the lower the flow stress, increasing deformation.

A Study on Fire Protection of Chemical Plants Using FRA (Fire Risk Assessment) Method (FRA(Fire Risk Assessment)기법을 이용한 화학공장의 Fire Protection에 관한 연구)

  • Han, Seung-Hoon;Yoo, Byung-Tae;Tae, Chan-Ho;Chae, Chung Keun;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.17-26
    • /
    • 2016
  • Chemical plants and oil gas refinery facilities are intrinsically vulnerable to industrial hazards, such as explosion or fire. Especially, the fire is extremely dangerous to facility structures and plant personnel because of direct flame, radiant heat and smoke. In addition, it has the ripple effect of destroying infra-structures and polluting the environment. In an effort to tackle these potential industrial risks, the procedure of FRA techniques in chemical plants were investigated. The main focus was put on the time variation of physical properties of the main building, i.e. control rooms, warehouses and electrical substations, from a direct flame contact and radiant heat. The deformation of a building due to fire was monitored and modeled with respect to time variable. A variety of case studies, domestic and abroad, was tested in the model to verify the FRA procedure. The developed model was proven to be highly effective to reduce the possible risks at chemical plants. An accurate accident frequency prediction and damage quantification was made by the developed model.

The Ground Investigation Technique of Railway Using Pagani Cone Test (Pagani Cone Test를 이용한 철도노반 조사 기법 연구)

  • Cho, Eun-Kyung;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.792-801
    • /
    • 2016
  • Standard Penetration Test (SPT) and Cone Penetration Test (CPT) are widely used in geotechnical investigation methods for railway roadbed. However, SPT can not be used on the Railway track, since the equipment may contact to the electric lines. However, a portable equipment can be used for geotechnical investigation without electrical hazard. Dynamic Cone Penetrometer (DCP) is one of representative portable equipments. A normal portable DCP has usually not enough driving energy and the rigidity of cone-rod, so it is impossible to investigate the required investigate penetration depth. In this study, The adaptability of Pagani cone test which is one of portable dynamic cone penetrometer is studied and compared with SPT-N data. As a result of this study, the proposed correlation factors between Pagani cone test and SPT-N values after corrections is 1.48 for sandy soil and 1.33 for clayey soil.

Effect of Electrolyte Additive on the Electrochemical Characteristics of Lithium Vanadium Oxide Anode (전해질 첨가제가 리튬 바나듐 옥사이드 전극의 성능에 미치는 영향)

  • Lee, Je-Nam
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.3
    • /
    • pp.55-60
    • /
    • 2018
  • The demand for LIBs with higher energy densities has increased continuously because the emergence of wider and more challenging applications including HEV and EV has became imperative. However, in the case of anode material, graphite is insufficient to meet this need. To meet such demand, several type of negative electrode materials like silicon, tin, SiO, and transition metal oxide have been investigated for the advanced lithium secondary batteries. Recently, lithium vanadium oxide, which has a layered structure, is assumed as one of the promising anode material as alternative of graphite. This material shows a high volumetric capacity, which is 1.5 times higher than that of graphite. However, relative low electrical conductivity and particle fracture, which results in the electrolyte decomposition and loss of electric contact between electrode, induce rapid capacity decay. In this report, we investigated the effect of electrolyte additive on the electrochemical characteristics of lithium vanadium oxide.

Fabrication of a Cu2ZnSn(S,Se)4 thin film solar cell with 9.24% efficiency from a sputtered metallic precursor by using S and Se pellets

  • Gang, Myeong-Gil;Hong, Chang-U;Yun, Jae-Ho;Gwak, Ji-Hye;An, Seung-Gyu;Mun, Jong-Ha;Kim, Jin-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.86.2-86.2
    • /
    • 2015
  • Cu2ZnSn(S,Se)4 thin film solar cells have been fabricated using sputtered Cu/Sn/Zn metallic precursors on Mo coated sodalime glass substrate without using a toxic H2Se and H2S atmosphere. Cu/Sn/Zn metallic precursors with various thicknesses were prepared using DC magnetron sputtering process at room temperature. As-deposited metallic precursors were sulfo-selenized inside a graphite box containing S and Se pellets using rapid thermal processing furnace at various sulfur to selenium (S/Se) compositional ratio. Thin film solar cells were fabricated after sulfo-selenization process using a 65 nm CdS buffer, a 40 nm intrinsic ZnO, a 400 nm Al doped ZnO, and Al/Ni top metal contact. Effects of sulfur to selenium (S/Se) compositional ratio on the microstructure, crystallinity, electrical properties, and cell efficiencies have been studied using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscope, I-V measurement system, solar simulator, quantum efficiency measurement system, and time resolved photoluminescence spectrometer. Our fabricated Cu2ZnSn(S,Se)4 thin film solar cell shows the best conversion efficiency of 9.24 % (Voc : 454.6 mV, Jsc : 32.14 mA/cm2, FF : 63.29 %, and active area : 0.433 cm2), which is the highest efficiency among Cu2ZnSn(S,Se)4 thin film solar cells prepared using sputter deposited metallic precursors and without using a toxic H2Se gas. Details about other experimental results will be discussed during the presentation.

  • PDF