• 제목/요약/키워드: Electrical Conductivity Sensor

검색결과 136건 처리시간 0.031초

초음파와 전기전도 센서를 이용한 우레아 탱크 수위, 농도 및 온도의 동시 측정 방안 (Simultaneous Measurement of Liquid-level, Concentration and Temperature of a Urea Tank using Ultrasonic and Electrical Conductivity Sensors)

  • 최병철;김태욱
    • 동력기계공학회지
    • /
    • 제21권5호
    • /
    • pp.71-78
    • /
    • 2017
  • The purpose of this study is to propose the basic data for the development of a sensor capable of simultaneously measuring the liquid-level, concentration and temperature of a urea tank using ultrasonic and electrical conductivity sensors for diesel vehicles with a urea-SCR system. It was found that the liquid-level of the urea tank using the ultrasonic sensor showed a good linearity with the actual liquid-level, and the urea concentration maintained good linearity in the range of 32.5 wt% to 10 wt%. It was an effective measurement of urea concentration to use the electrical conductivity sensor in the temperature range of $-10{\sim}22^{\circ}C$ and to use the ultrasonic sensor at $22^{\circ}C$ or more. Simultaneous measurement of concentration, liquid-level and temperature of the urea tank will be possible by attaching the electrical conductivity sensor and the ultrasonic sensor (split-type) to one sensor together.

차량용 Dynamo-Meter를 이용한 도전성가스 분석연구 (Analysis of Conductivity Gas by using Automotive Dynamo-Meter)

  • 전영갑;서길수;노형우
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.112-118
    • /
    • 2001
  • In this study the leakage current measurement method based on a porous ceramic is applied to check the conductive substance caused by the ionized particles. By using engine and chassis dynamometer and an experiment vehicle, in which the hydrocarbon sensor (HC sensor) was exposed to the exhaust gas to create the electrical signal, the HC sensor in the exhaust line checked the conductive ions in emission gas. Generally the output electrical signal of HC sensor is followed with amount of hydrocarbon in the experiments in cold start and operation. By combining the electrical signal, a measure of conductivity of exhaust gas with hydrocarbon can be provided by OBD (On Board Diagnosis) II and EMS (Engine Management System).

  • PDF

LTCC 기술을 이용한 가스센서 구현 (Realization of gas sensor using LTCC(Low Temperature Cofired Ceramic) technology)

  • 전종인;최혜정;이영범;김광성;박정현;김무영;임채임;문제도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.369-370
    • /
    • 2005
  • LTCC (Low Temperature Cofired Ceramic) technology is one of technologies which can realize SIP (System-In-a-Package). In this paper realization of gas sensor using LTCC technology was described. In the conventional gas sensor structure, wire bonding method is generally used as an interconnection method whereas in the LTCC sensor structure, via was used for the interconnection. As sensing materials, $SnO_2$ was adopted. The effect of frit glass portion on the adhesion of the sensing material to the LTCC substrate and the electrical conductivity of the sensing material were analyzed. AgPd, PdO, Pt was added to the sensing material as an additive for improving the gas sensitivity and electrical conductivity and the effect of the amount of additives in the sensing material on the electrical conductivity was investigated. The effect of the amount of frit glass in the termination on the sensor performance, especially mechanical integrity, was considered and the crack initiation and propagation in the boundary between the sensing material and the termination was studied.

  • PDF

An ITO/Au/ITO Thin Film Gas Sensor for Methanol Detection at Room Temperature

  • Jeong, Cheol-Woo;Shin, Chang-Ho;Kim, Dae-Il;Chae, Joo-Hyun;Kim, Yu-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권2호
    • /
    • pp.77-80
    • /
    • 2010
  • Indium tin oxide (ITO) films with a 5 nm thick Au interlayer were prepared on glass substrates. The effects of the Au interlayer on the gas sensitivity for detecting methanol vapors were investigated at room temperature. The conductivity of the film sensor increased upon exposure to methanol vapor and the sensitivity also increased proportionally with the methanol vapor concentration. In terms of the sensitivity measurements, the ITO film sensor with an Au interlayer shows a higher sensitivity than that of the conventional ITO film sensor. This approach is promising in gaining improvement in the performance of ITO gas sensors used for the detection of methanol vapor at room temperature.

고정밀 2상유동 액막두께 측정을 위한 연성회로기판 기반 3-전극 센서 개발 (Development of Three-ring Conductance Sensor based on Flexible Printed Circuit Board for Measuring Liquid Film thickness in Two-phase Flow with High Resolution)

  • 이규병;김종록;어동진;박군철;조형규
    • 센서학회지
    • /
    • 제25권1호
    • /
    • pp.57-64
    • /
    • 2016
  • To understand a two-phase flow, a liquid film thickness is one of the important factors. A lot of researches have been performed to measure liquid film thickness with various approaches. Recently, an electrical conductance method which uses the conductivity of the liquid film has been widely applied on measuring the liquid film thickness. Though the electrical method has an advantage in high spatial resolution, as the conductivity of liquid can be affected by its temperature variation, the conventional electrical conductance methods have a limitation in being applied on varying temperature conditions where a heat transfer is involved. The purpose of this study is to develop a three-ring liquid film sensor that overcomes the limitation of the conventional method. The three-ring conductance method can measure the film thickness regardless of temperature variation by compensating the change of liquid conductivity. Considering its application on a wide range of conditions such as high temperature or curved surfaces, the sensor was fabricated on flexible printed circuit board (FPCB) in this study. This paper presents the concept of the measurement method, design procedure, prototype sensor fabrication and calibration results.

Thick Graphene Embedded Metal Heat Spreader with Enhanced Thermal Conductivity

  • Park, Minsoo;Chun, Kukjin
    • 센서학회지
    • /
    • 제23권4호
    • /
    • pp.234-237
    • /
    • 2014
  • In this paper, a copper foil-thick grapheme (thin graphite sheet)-copper foil structure is reported to achieve mechanically strong and high thermal conductive layer suitable for heat spreading components. Since graphene provides much higher thermal conductivity than copper, thick graphene embedded copper layer can achieve higher effective thermal conductivity which is proportional to graphene/copper thickness ratio. Since copper is nonreactive with carbon material which is graphene, chromium is used as adhesion layer to achieve copper-thick graphene-copper bonding for graphene embedded copper layer. Both sides of thick graphene were coated with chromium as an adhesion layer followed by copper by sputtering. The copper foil was bonded to sputtered copper layer on thick graphene. Angstrom's method was used to measure the thermal conductivity of fabricated copper-thick graphene-copper structure. The thermal conductivity of the copper-thick graphene-copper structures is measured as $686W/m{\cdot}K$ which is 1.6 times higher than thermal conductivity of pure copper.

Smart Water Quality Sensor Platform For Hydroponic Plant Growing Applications

  • Nagavalli, Venkata Raja Satya Teja;Lee, Seung-Jun;Lee, Kye-Shin
    • Journal of Multimedia Information System
    • /
    • 제5권3호
    • /
    • pp.215-220
    • /
    • 2018
  • This work presents a smart water quality sensor for hydroponic plant growing applications. The proposed sensor can effectively measure pH level and electrical conductivity of the water solution. The micro-controller incorporated in the sensor processes the raw sensor data, and converts it into a readable format. In addition, through the mobile interface realized using a WiFi module, the sensor can send data to the web server database that collects and stores the data. The data stored in the web server can be accessed by a personal computer or smart phone. The prototype sensor has been implemented, and the operations have been verified under an actual hydroponic plant growing application.

Novel Smart Polymeric Composites for Thermistors and Electromagnetic Wave Shielding Effectiveness from TiC Loaded Styrene-Butadiene Rubber

  • Sung, Yong-Kiel;Farid EI-Tantawy
    • Macromolecular Research
    • /
    • 제10권6호
    • /
    • pp.345-358
    • /
    • 2002
  • The electrical conductivity during vulcanization process was measured as a function of time for the system of TiC loaded styrene-butadiene rubber (SBR) composites. The phenomenon of negative and positive temperature coefficients of conductivity and its conduction mechanism were also studied for the SBR polymeric composites. The current-voltage characteristics of the polymeric composites were non-linear in high voltage and showed a switching effect. The effects of temperature on the thermal conductivity and effective dielectric constant were measured. The measured parameters were found to be dependent on TiC concentration. The electromagnetic wave shielding (EMS) of the SBR-TiC polymeric composite was also examined. The SBR filled with TiC could be expected to be promising novel smart polymeric composites for self-electrical heating, temperature sensor, time delay switching, and electro-magnetic wave shielding effectiveness.

지방산 LB막의 온도에 대한 전기전도도 특성 (Conductivity Characteristic for Temperature of Stearic acid LB films)

  • 이준호;김경환;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.884-885
    • /
    • 1998
  • The electrical characteristics of Stearic acid Langmuir-Blodgett(LB) films were investigated to develop the gas sensor using LB films. The deposition status of LB films were verified I-V characteristic which was increased with an applied voltage for the number of layers and decreased as increasing the distance of electrode. The conductivity of Stearic acid LB films was $10^{-8}[S/cm]$, which is typical of semiconductor. The conductivity of LB films were increased as the temperature was increased. The activation energy was about 1[eV].

  • PDF