• Title/Summary/Keyword: Electrical Characteristic Measurement

Search Result 367, Processing Time 0.037 seconds

Reasonable Load Characteristic Experiment for Component Load Modeling (개별 부하모델링을 위한 부하의 합리적인 특성실험)

  • Ji, Pyeong-Sik;Lee, Jong-Pil;Im, Jae-Yun;Chu, Jin-Bu;Kim, Jeong-Hun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.45-52
    • /
    • 2002
  • Load modeling is classified into two methods according to approaching method, so called the measurement and component-based method. The measurement method is to model the load characteristics measured directly at substations and feeders. But it is difficult to measure continuously load characteristics from naturally occurring. system variation. The component-based method consists of the fellowing process; component load modeling, composition rate estimation and aggregation of component loads, etc. In this paper, the characteristic experiment of component loads was performed to obtain data for the component load modeling as the component-based method. At first, representative component loads were selected by the proposed method considering the accuracy of load modeling and the performance possibility of component load experiment in the laboratory. Also an algorithm was Proposed to identify the reliability of data obtained from the component load characteristic experiments. In addition, the results were presented as the case studies.

Characteristic in Mg-doped p-type GaN changing activation temperature in $N_2$ gas ambient

  • Lee, Sung-Ho;Kim, Chul-Joo;Seo, Yong-Gon;Seo, Mun-Suek;Hwang, Sung-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.113-114
    • /
    • 2008
  • Conventional furnace annealing (CFA) for activating Mg-doped p-type GaN films had been performed in pure $N_2$ ambient. All sample activated the same gas ambient. The annealing process change temperature: the first process is performed at $550^{\circ}C$ for 10 min. but, the first process is the same bulk. From second to five process increase activation temperature to change $50^{\circ}C$ and annealing time keeping for 10 min. It is found that the samples characteristic measure hall measurement. Similar results were also evidenced by photoluminescence (PL) measurement.

  • PDF

A Study on the Development of a Lightning Warning System by the Measurement of Electric Field at the Ground (용량성 프로브와 광전송회로를 이용한 광대역 전압측정장치)

  • Kil, Gyung-Suk;Song, Jae-Yong;Park, Dae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.363-368
    • /
    • 2004
  • A reliable voltage measurement system is necessary to monitor status of power facilities in substations, which is easy to set up and is not influenced by electromagnetic interference in and around substation. In this paper, we described a voltage measurement system (VMS) which is composed of a capacitive voltage probe, an impedance converter, and an optical linker. To get a wide-band characteristic of the VMS, a high speed impedance converter was used, and the output impedance of the VMS was set at $50{\Omega}$ to match any types of observing instruments. The frequency bandwidth of the VMS. which was estimated by a step pulse, was ranges from 11.42 Hz to 13.65 MHz, and the VMS showed a good response characteristic in a high frequency domain such as impulse voltages as well as a commercial frequency voltage.

Study on Measurement Method of Dielectric Recovery Voltage to analysis Dielectric Recovery Characteristic of Molded Case Circuit Breaker (저압 배선용차단기 절연회복특성 파악을 위한 절연회복전압 측정기법 연구)

  • Song, Tae-Hun;Cho, Young-Maan;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.49-54
    • /
    • 2015
  • Molded Circucit Breaker(MCCB) is a most widely used device to protect loads from the over-current in low power level distribution system. When the MCCB interrupts the over-current, the arc discharge occurred between fixed contact and moving contact to create hot gas. By the Lorentz force due to arc current, the occurred arc is bent to the grids. The grids extend and cool and divide it for arc extinguish. In the majority cases, the MCCB protects loads by interrupting the over-current successfully but in some cases the re-ignition is occurred by hot-gas created during process of interruption. The re-ignition arises when the recovery voltage(RV) is more higher than the recovery strength between contacts and it leads to interruption fault. Therefore to find out the dielectric recovery characteristics of protecting device has a great importance for preventing interruption fault. In this paper, we studies measurement method of the dielectric recovery characteristics considering inherent attribute of the MCCB. To measure the dielectric recovery characteristic of MCCB, we makes an experiment circuit for applying the over-current and the randomly recovery voltage. The measurement methode to find out the dielectric recovery voltage of the MCCB was established and the result was based on experiment results.

Electrically and magnetically Characterization for Ferroelectric/Ferrimagnetic ceramics (PZT/Ferrite 합성 세라믹의 전기적.자기적 특성연구)

  • Kim, Jang-Yong;Oh, Joon-Hak;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.30-33
    • /
    • 2001
  • This thesis deal with ferroelectric and ferrimagnetic materials, PZT/Ferrite ceramics. We conducted test of magnetical and electrical measurement. From this measurement, We obtained tunability and we can control characteristic impedance($Z_0$) from permeability($\mu$) and dielectric constant($\varepsilon$) for impedance matching in transmission line.

  • PDF

Electrically and magnetically Characterization for Ferroelectric/Ferrimagnetic ceramics (PZT/Ferrite 합성 세라믹의 전기적.자기적 특성연구)

  • 김장용;오준학;문병무
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.30-33
    • /
    • 2001
  • This thesis deal with ferroelectric and ferrimagnetic materials, PZT/Ferrite ceramics. We conducted test of magnetical and electrical measurement. From this measurement, We obtained tunability and we can control characteristic impedance(Z$_{0}$) from permeability($\mu$) and dielectric constant($\varepsilon$) for impedance matching in transmission line.e.

  • PDF

Design of Current-Type Readout Integrated Circuit for 160 × 120 Pixel Array Applications

  • Jung, Eun-Sik;Bae, Young-Seok;Sung, Man-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.221-224
    • /
    • 2012
  • We propose a Readout Integrated Circuit (ROIC), which applies a fixed current bias sensing method to the input stage in order to simplify the circuit structure and the infrared sensor characteristic control. For the sample-and-hold stage to display and control a signal detected by the infrared sensor using a two-dimensional (2D) focal plane array, a differential delta sampling (DDS) circuit is proposed, which effectively removes the FPN. In addition, the output characteristic is improved to have wider bandwidth and higher gain by applying a two-stage variable gain amplifier (VGA). The output characteristic of the proposed device was 23.91 mV/$^{\circ}C$, and the linearity error rate was less than 0.22%. After checking the performance of the ROIC using HSPICE simulation, the chip was manufactured and measured using the SMIC 0.35 um standard CMOS process to confirm that the simulation results from the actual design are in good agreement with the measurement results.

HFPD Characteristic Analysis of Simulated Transformer According To Applied Voltage (인가전압에 따른 모의변압기의 HFPD 특성분석)

  • Kim, Duck-Keun;Im, Young-Sham;Lim, Jang-Seob;Moon, Chae-Joo;Lee, Jin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1957-1959
    • /
    • 2000
  • The PD measurement method is very useful to detect insulation degradation. Recently, the HFPD(High Frequency Partial Discharge) measurement testing is widely used in partial discharge measurement of HV machines because HFPD measurement testing receives less influence of external noise and has a merit of good sensitivity. Therefore it is very useful method compare to previous conventional PD testing method and effective diagnosis method in power transformer that requires in-service diagnosis. But partial discharges have very complex characteristics of discharge pattern so it is required continuous research to development of precise analysis method. In this study, simulated transformer is manufactured and HFPD occurred from simulated transformer is measured with broad band antenna and active-line RF measurement system in real time, the degradation grade of transformer is analyzed through produced patterns in simulated transformer according to applied voltages. Also the PD pattern which was measured with EMC analyzer and RF measurement system is compared.

  • PDF

Calibration Techniques for Low-Level Current Measurement in the Characteristic Analysis System for Semiconductor Devices (저전류 측정을 위한 반도체 소자 특성 분석 시스템에서의 보상 기법)

  • Choi, In-Kyu;Park, Jong-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.111-117
    • /
    • 2002
  • In this paper, we proposed calibration techniques to improve measurement accuracy in the characteristic analysis system for semiconductor devices. Systematic errors can be reduced using proposed calibration techniques. Also, error current reduction procedures including leakage current and offset current are proposed to measure low-level current in pA level. Calibration parameters are calculated and stored by microprocessor using least-square fitting with measured sample data. During measurement time microprocessor corrects measured data using stored calibration parameters. Experimental results show that current measurement error above nA level is less than 0.02%. And they also show that current measurement in pA level can be performed with about 0.2% accuracy.