• Title/Summary/Keyword: Electric transformer

Search Result 697, Processing Time 0.024 seconds

A Study on Evalution of Corrosion Properties in cooling tube of water cooling transformers (수냉식변압기 냉각튜브의 부식특성 평가에 관한 연구)

  • Jeong, Nyeon-Ho;Min, Byung-Yeon;Park, Hyun-Joo
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.216-222
    • /
    • 2010
  • Most of the thirteen substations in operation in the metropolitan area were installed around the year 2000, and since water cooling methods are used to directly withdraw heat from transformer oils, a stable supply of electric power is required through optimal maintenance of facilities. The water cooling tower installed outdoors, which uses the water supply as sprinkler water, experiences the most problems. Since more than 90% of the cooling water is reused, the dissolved composition in the water becomes concentrated due to long operating hours, and impurities dissolve in the water due to air flowing in from the outside, forming hard scales on the outer surface of the cooling tube, and in extreme cases, reacting with the tube material composition, leading to corrosion. As a result, not only is cooling efficiency lowered, but in extreme cases the cooling tube must be replaced. In this study, the characteristics and composition of the scales formed on the cooling tube were analyzed and corrosion characteristics of material types were identified in order to find an efficient maintenance method for cooling tubes. In addition, the degree of dissolution of various chemicals were investigated during the removal of scales that have been formed.

Electrical Properties of Rosen Type piezoelectric transformers using Low Temperature Sintering PMN-PNN-PZT ceramics (저온소결 PMN-PNN-PZT계 세라믹스를 이용한 Rosen형 압전변압기의 전기적 특성)

  • Lee, Sang-Ho;Yoo, Ju-Hyun;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.53-53
    • /
    • 2008
  • Piezoelectric transformers have been widely used such as DC-DC convertor, invertor, Ballast, etc. Because, the y have some merits compared with electro-magnetic transformers such as step-up ratio, high efficiency, small size and lg hit weight, etc. Piezoelectric transformer require high electromechanical coupling factor kp in order to induce a large out put power in proportional to applied electric field. And also, high mechanical quality factor Qm is required to prevent mechanical loss and heat generation. In general, PZT system ceramics should be sintered at high temperatures between 1200 and $1300^{\circ}C$ in order to obtain complete densification. Accordingly, environmental pollution due to its PbO evaporation. Hence, to reduce its sintering temperature, various kinds of material processing methods such as hot pressing, high energy mill, liquid phase sintering, and using ultra fine powder have been performed. Among these methods, liquid phase sintering is basically an effective method for aiding densification at low temperature. In this study, In order to comparis on low temperature sintering and solid state sintering piezoelectric transformers, rosen type transformers were fabricated u sing two PZT ceramics compositions and their electrical properties were investigated.

  • PDF

A Study on the Application of SFCL on 22.9 kV Bus Tie for Parallel Operation of Power Main Transformers in a Power Distribution System (배전계통에 전력용 변압기 병렬운전시 22.9 kV SFCL Bus Tie 적용방안에 관한 연구)

  • On, Min-Gwi;Kim, Myoung-Hoo;Kim, Jin-Seok;You, Il-Kyoung;Lim, Sung-Hun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • This paper analyzed the application of Superconducting Fault Current Limiter (SFCL) on 22.9 [kV] bus tie in a power distribution system. Commonly, the parallel operations of power main transformers offer a lot of merits. However, when a fault occurs in the parallel operation of power main transformer, the fault currents might exceed the interruption capacity of existing protective devices. To resolve this problem, thus, the SFCL has been studied as the fascinating device. In case that, Particularly, the SFCL could be installed to parallel operation of various power main transformers in power distribution system of the Korea Electric Power Corporation (KEPCO) on 22.9 [kV] bus tie, the effect of the resistance of SFCL could reduce the increased fault currents and meet the interruption capacity of existing protective devices by them. Therefore, we analyzed the effect of application and proposed the proper impedance of the R-type SFCL on 22.9 [kV] bus tie in a power distribution system using PSCAD/EMTDC.

Numerical Study of Estimating the Arrival Time of UHF Signals for Partial Discharge Localization in a Power Transformer

  • Ha, Sang-Gyu;Cho, Jeahoon;Lee, Juneseok;Min, Byoung-Woon;Choi, Jaehoon;Jung, Kyung-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.94-100
    • /
    • 2018
  • Partial discharges (PDs) are electrical sparks that occur inside insulation between two conducting electrodes and can lead to the disastrous failure of insulation systems. To determine the location of a PD, a distributed array of UHF PD sensors is used to detect the electromagnetic (EM) signals emitted from the PD source, and the localization of the PD source can be estimated using the time difference of arrival (TDOA) between EM signals captured by the UHF PD sensor array. There are four popular methods to estimate the TDOA-the first peak method, the cross-correlation method, the energy criterion method, and the average time window threshold method. In this work, we numerically investigate the influence of noise on estimating the TDOA for the four different methods. Numerical results show that the energy criterion method is more robust against noise than other methods.

Analysis of Space Charge Propagation in a Dielectric liquid Employing Field-Thermal Electron Emission Model and Finite Element Method (유한요소법과 전계-열전자 방출 모델에 의한 절연유체 내 공간전하 전파해석)

  • Lee, Ho-Young;Lee, Se-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2011-2015
    • /
    • 2009
  • In an insulating dielectric liquid such as transformer oil, space charge injection and propagation were analyzed under the Fowler-Nordheim and Richardson-Dushman's thermal emission charge injection conditions for blade-plane electrodes stressed by a step voltage. The governing equations were composed of all five equations such as the Poisson's equation for electric fields, three continuity equations for electrons, negative, and positive ions, and energy balanced equation for temperature distributions. The governing equations for each carrier, the continuity equations, belong to the hyperbolic-type PDE of which the solution has a step change at the space charge front resulting in numerical instabilities. To decrease these instabilities, the governing equations were solved simultaneously by the Finite Element Method (FEM) employing the artificial diffusion scheme as a stabilization technique. Additionally, the terminal current was calculated by using the generalized energy method which is based on the Poynting's theorem, and represents more reliable and stable approach for evaluating discharge current. To verify the proposed method, the discharge phenomena were successfully applied to the blade~plane electrodes, where the radius of blade cap was $50{\mu}m$.

Effective Harmonic Diagnose Tool for Power Quality Problems (전기품질개선을 위한 효율적인 고조파 진단 툴 개발)

  • 설용태;이의용
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.63-68
    • /
    • 2002
  • In this paper harmonic diagnose tool is described for electric evaluate the power quality at industrial power systems is described both simulation and experimental testing during various operation conditions. PTW (Power Tools for Windows) and harmonic measuring instrument are organized around personal computer and/or instrumentation study environments interconnected via RS-232. Unknown zero sequence impedance data of cable is calculated by the modified T&D and BICC method. IEEE standard is also used to estimate the transformer input data. the proposed system provides a flexible and effective environment to diagnose the power quality at industrial distribution systems by utilizing simulations and actual field data.

  • PDF

A Study of the High Voltage Power Supply using a Sixfold Voltage-Multiplying Rectifier (6배압 정류기를 이용한 고전압 전원장치에 관한 연구)

  • Ahn, Tae-Young;Gil, Yongl-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.19-26
    • /
    • 2015
  • This paper presents design, fabrication, and performance evaluation of a high voltage power supply for Carbon Nano Tube-based planar light sources. The proposed power supply employs an LLC resonant half-bridge converter and a sixfold voltage-multiplying rectifier. Steady-state characteristics of the voltage-multiplying rectifier are analyzed and used to derive the input-to-output voltage conversion ratio of the power supply. The input-to-output frequency response characteristics of the LLC tank circuit are analyzed and utilized in designing a proto-type power supply which produces a 15 KV output using a 400 V input source. The high-voltage transformer is fabricated using a sectional bobbin structure with an epoxy impregnation, in order to provide sufficient insulation for high voltage operations. The performance of the proposed power supply is confirmed with stable and reliable operations at the 15 KV output from no load to nominal load conditions. The proposed power supply is well suited as an electric ballast required stable operations of Carbon Nano Tube-based planar light sources.

Immunity of Electronic Equipments Against Potable High Voltage Generator (휴대형 고전압 발생기에 대한 전자기기의 내성)

  • Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.61-62
    • /
    • 2017
  • In this study, we introduce some main functions and specifications of a recently commercialized potable compact high voltage generator. USB killer has been designed to test surge protection circuitry of electronic equipments using USB ports. USB killer transforms 5V DC power supplied by USB port into a sufficiently high voltage over 200V DC through oscillator, transformer, voltage multiplier, and rectifier. The power charged in a high-capacity condenser can be applied back into the electronic equipments as an electric shock to destroy them or test protection circuits. USB killer is a readily available item, and one can test a variety of electronic equipments. We introduce some test results known over the internet and those obtained from our tests.

  • PDF

The Development of An Improved Distribution Automation System Including Low Voltage Monitoring Function (저압 배전망 감시기능을 포함하는 개선된 배전자동화시스템 개발)

  • Shin, Chang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1034-1041
    • /
    • 2007
  • This paper presents the developing results of improved distribution automation system including system configuration and subsystem design, prototype hardware and software implementation, and pilot tests on the real distribution networks of Korea Electric Power Corporation (KEPCO). An integrated system is designed to combine independent system for the distribution field works with DAS; transformer monitoring, power quality monitoring, voltage monitoring, outage monitoring, etc. The communication network is hierarchically configured as main network and branch network and well-defined integrated terminal units were developed. In addition, useful host configuration and applications were developed to integrate the services with DAS or interfacing other systems. Pilot tests were performed to verify that the system enables to properly integrate the DAS and other services of the distribution network.

  • PDF

Efficiency Optimization with a Novel Magnetic-Circuit Model for Inductive Power Transfer in EVs

  • Tang, Yunyu;Zhu, Fan;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.309-322
    • /
    • 2018
  • The technology of inductive power transfer has been proved to be a promising solution in many applications especially in electric vehicle (EV) charging systems, due to its features of safety and convenience. However, loosely coupled transformers lead to the system efficiency not coming up to the expectation at the present time. Therefore, at first, the magnetic core losses are calculated with a novel magnetic-circuit model instead of the commonly used finite-element-method (FEM) simulations. The parameters in the model can be obtained with a one-time FEM simulation, which makes the calculation process expeditious. When compared with traditional methods, the model proposed in the paper is much less time-consuming and relatively accurate. These merits have been verified by experimental results. Furthermore, with the proposed loss calculation model, the system is optimized by parameter sweeping, such as the operating frequency and winding turns. Specifically, rather than a predesigned switching frequency, a more efficiency-optimized frequency for the series-parallel (SP) compensation topology is detected and a detailed investigation has been presented accordingly. The optimized system is capable of an efficiency that is greater than 93% at a coil separation distance of 200mm and coil dimensions of $600mm{\times}400mm$.