• Title/Summary/Keyword: Electric transformer

Search Result 697, Processing Time 0.028 seconds

A Study on Load Current and Temperature to Expect Lifetime of High-Power Cables (고전력 케이블의 잔여 수명 예측을 위한 부하 전류 및 온도 연구)

  • Um, Kee-Hong;Lee, Kwan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.199-203
    • /
    • 2015
  • With the development of industry these days, the demand for electric power increases and the larger capacity for power transfer is required. The scales of facilities should become larger; and the relative systems are required to operate with a higher degree of reliability. Therefore, stabilization of electric power systems is an important issue. The high degree of reliability required in the process of production and supply of electric power is an essential part of industrial society. Accident such as blackouts causes a hugh amount of economic losses to the high-tech industrial society dependent upon electric power. This paper is about the basic study of the relations between the load current and lifetime of power cables in operation. In order to do the research, we installed a current transformer and an equipment for measuring temperature at the 6.6. kV cables in operation. The two equipments have been installed on the cable systems in operation for the last 20 years. Since the insulation resistance of most of the cables showed the value larger than the threshold, it was not easy to tell the remaining lifetime of cables. The load current of the cables was almost constant. The surrunding temperature was $15{\sim}25^{\circ}C$, little variation of temperature values.

Evaluation Method for Protection Coordination of PV Systems Interconnected with Primary Feeders (태양광전원이 연계된 고압배전선로의 보호협조 평가 방안에 관한 연구)

  • Kim, Byungki;Kim, Sohee;Ryu, Kyungsang;Rho, Daeseok
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.4
    • /
    • pp.29-37
    • /
    • 2011
  • Dispersed generation (DG) such as wind power (WP) and Photovoltaic systems (PV) that has been promoted at the national level recently is mainly being introduced into distribution systems adjacent to consumers because it is generation on a small scale when compared to current generation. Due to its characteristics, DG can be operated by interconnection with distribution systems to present security of more stable power and efficient use of power facilities and resources. Problems on protection coordination of distribution systems by reverse flow of DG can roughly be divided into three possibilities: excess in rated breaking capacity (12.5KA) of protective devices by a fault in DG current supply, failure to operate protective devices by an apparent effect that can occur by reduction in impedance parallel circuit fault current due to interconnection of DG, and malfunction of protective devices by interconnection transformer connection type. The purpose of this study is to analyze problems in protection coordination that can occur when DG is operated by interconnection with distribution systems by conducting modeling and simulations by using theoretical symmetrical components and MATLAB/SIMULINK to present methods to improve such problems.

Active Front End Rectifier Control of DC Distribution System Using Neural Network (신경회로망을 적용한 직류배전시스템의 AFE 정류기 제어에 관한 연구)

  • Kim, Seongwan;Jeon, Hyeonmin;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1124-1128
    • /
    • 2021
  • As regulations of emissions from ships become more stringent, electric propulsion systems have been increasingly used to solve this problem in vessels ranging from large merchant ships to small and medium-sized ships. Methods for improving the efficiency of the electric propulsion system include the improvement of power sources; the use of a system linked to environmentally friendly power sources, such as batteries, fuel cells, and solar power; and the development of hardware and control methodology for rectifiers, power conversion devices, and propulsion motors. The method using a phase-shifting transformer with diodes has been widely used for rectification. Power semiconductor devices with grid connection to an environmentally friendly power source using DC distribution, a variable speed power source, and the application of small and medium-sized electric propulsion systems have been developed. Accordingly, the demand for active front-end (AFE) rectifiers is increasing. In this study, a method using a neural network rather than a conventional proportional-integral controller was proposed to control the AFE rectifier. Tested controller data were used to design a neural network controller trained through MATLAB/Simulink. The neural network controller was applied to a rectification system designed using PSIM software. The results indicated the effectiveness of improving the waveform and power factor DC output stage according to the load variation. The proposed system can be applied as a rectification system for small and medium-sized environmentally friendly ships.

A New Three Winding Coupled Inductor-Assisted High Frequency Boost Chopper Type DC-DC Power Converter with a High Voltage Conversion Ratio

  • Ahmed Tarek;Nagai Shinichiro;Hiraki Eiji;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.99-103
    • /
    • 2005
  • In this paper, a novel circuit topology of a three-winding coupling inductor-assisting a high-frequency PWM boost chopper type DC-DC power converter with a high boost voltage conversion ratio and low switch voltage stress is proposed for the new energy interfaced DC power conditioner in solar photovoltaic and fuel cell generation systems. The operating principle in a steady state is described by using its equivalent circuits under the practical condition of energy processing of a lossless capacitive snubber. The newly-proposed power MOSFET boost chopper type DC-DC power converter with the three-winding coupled inductor type transformer and a single lossless capacitor snubber is built and tested for an output power of 500W. Utilizing the lower voltage and internal resistance power MOSFET switch in the proposed PWM boost chopper type DC-DC power converter can reduce the conduction losses of the active power switch compared to the conventional model. Therefore, the total actual power conversion efficiency under a condition of the nominal rated output power is estimated to be 81.1 %, which is 3.7% higher than the conventional PWM boost chopper DC power conversion circuit topology.

The Electric Characteristics of the Thermal Aged Insulation-Paper with Moisture Content on the Transformer (변압기 절연지의 수분함량 및 열화에 따른 전기적 특성 연구)

  • Kim, Pil-Hwan;Kim, Ju-Han;Lee, Byung-Sung;Lee, Won-Yeong;Kim, Do-Young;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1909-1911
    • /
    • 2004
  • It is caused that insulation paper, which had got a lot of thermal stress by over-load after installation, should have been deteriorated in electrical and mechanical characteristics. Beside, insulation material is decreased the insulating property and accelerated aging of them in case of dielectric loss when transformers are manufactured with some moisture or transformers would have been them because of moisture-permeation, Therefore, in this study we experienced the influence of moisture content in case of the thermal aged insulation paper. we have measured tan ${\delta}$ and breakdown voltage in the ratio of paper' moisture content before the aging and then taken the same tests again after insulation paper thermally accelerating-aged. There is a purpose to gain data for a life-design and to establish aging mechanism in order to continuously study life expectancy of the insulation paper.

  • PDF

Training an Artificial Neural Network (ANN) to Control the Tap Changer of Parallel Transformers for a Closed Primary Bus

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1042-1047
    • /
    • 2004
  • Voltage control is an essential part of the electric energy transmission and distribution system to maintain proper voltage limit at the consumer's terminal. Besides the generating units that provide the basic voltage control, there are many additional voltage-controlling agents e.g., shunt capacitors, shunt reactors, static VAr compensators, regulating transformers mentioned in [1], [2]. The most popular one, among all those agents for controlling voltage levels at the distribution and transmission system, is the on-load tap changer transformer. It serves two functions-energy transformation in different voltage levels and the voltage control. Artificial Neural Network (ANN) has been realized as a convenient tool that can be used in controlling the on load tap changer in the distribution transformers. Usage of the ANN in this area needs suitable training and testing data for performance analysis before the practical application. This paper briefly describes a procedure of processing the data to train an Artificial Neural Network (ANN) to control the tap changer operating decision of parallel transformers for a closed primary bus. The data set are used to train a two layer ANN using three different neural net learning algorithms, namely, Standard Backpropagation [3], Bayesian Regularization [4] and Scaled Conjugate Gradient [5]. The experimental results are presented including performance analysis.

  • PDF

Design Guidelines for a Capacitive Wireless Power Transfer System with Input/Output Matching Transformers

  • Choi, Sung-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1656-1663
    • /
    • 2016
  • A capacitive wireless power transfer (C-WPT) system uses an electric field to transmit power through a physical isolation barrier which forms a pair of ac link capacitors between the metal plates. However, the physical dimension and low dielectric constant of the interface medium severely limit the effective link capacitance to a level comparable to the main switch output capacitance of the transmitting circuit, which thus narrows the soft-switching range in the light load condition. Moreover, by fundamental limit analysis, it can be proved that such a low link capacitance increases operating frequency and capacitor voltage stress in the full load condition. In order to handle these problems, this paper investigates optimal design of double matching transformer networks for C-WPT. Using mathematical analysis with fundamental harmonic approximation, a design guideline is presented to avoid unnecessarily high frequency operation, to suppress the voltage stress on the link capacitors, and to achieve wide ZVS range even with low link capacitance. Simulation and hardware implementation are performed on a 5-W prototype system equipped with a 256-pF link capacitance and a 200-pF switch output capacitance. Results show that the proposed scheme ensures zero-voltage-switching from full load to 10% load, and the switching frequency and the link capacitor voltage stress are kept below 250 kHz and 452 V, respectively, in the full load condition.

A High Efficiency Bidirectional Resonant Converter With Auxilary LC Circuit for V2G System (V2G 시스템을 위한 보조 LC 회로를 가진 고효율 양방향 공진형 컨버터)

  • Tranand, Duc-Hung;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.323-324
    • /
    • 2016
  • In this paper a high efficiency bidirectional resonant converterfor Vehicle-to-Grid applications (V2G) is proposed.The proposed converter has adopted an LC auxiliary circuit in the third winding of the transformer. With the proposed method full softswitching can be ensured in all switches over a wide range of loadsand the secondary ringing can be removed with no additional snubber or clamp circuitry.In addition, since the proposed resonant converter is able to operate at an almost constant resonant frequencyregardless of the load, CC/CV charge of the battery can be simply implemented with high efficiency. A 3.3 kW bidirectional converter for On-Board Charger of Electric Vehicle is implemented to verify the validity of the proposed method. The experimental results show the high efficiency characteristics of the proposed converter over the wide range of load in both charge and discharge mode. The maximum efficiency of the proposed system was 98.13 % at 2.3 kW during the constant voltage mode charge operation.

  • PDF

A Capacitor-Charging Power Supply Using a Series-Resonant Three-Level Inverter Topology

  • Song I. H.;Shin H. S.;Choi C. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.301-303
    • /
    • 2001
  • In this paper we present a Capacitor Charging Power Supply (CCPS) using a series-resonant three-level inverter topology to improve voltage regulation and use semiconductor switches having low blocking voltage capability such as MOSFETs. This inverter can be operated with two modes, Full Power Mode (FPM) and Half Power Mode (HPM). In FPM inverter supplies the high frequency step up transformer with full DC-link voltage and in HPM with half DC-link voltage. HPM switching method will be adopted when CCPS output voltage reaches the preset target value and operates in refresh mode-charge is maintained on the capacitor. In this topology each semiconductor devices blocks a half of the DC-link voltage[2]. A 15kW, 30kV CCPS has been built and will be tested for an electric precipitator application. The CCPS operates from an input voltage of 500VDC and has a variable output voltage between 10 to 30kV and 1kHz repetition rate at 44nF capacitive load [3]. A resonant frequency of 67.9kHz was selected and a voltage regulation of $0.83\%$ has been achieved through the use of half power mode without using the forced cut off the switch current [1]. The theory of operation, circuit topology and test results are given.

  • PDF

Study on Stability Analysis for Systematic Impact Assessment at the Cooperation of Land in Offshore Wind Power Generation Demonstration Complex (해상풍력 실증 단지 육지 연계시 계통 영향 평가를 위한 안정도 해석에 관한 연구)

  • Park, Sang-ho;Kim, Kern-Joong;Han, Sangwook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.151-157
    • /
    • 2017
  • In this paper, it is the result of analysis of the stability by power system analysis about the influence on the power system when the southwest - offshore wind power demonstration complex is constructed to 60MW and it is linked with the onshore power system. Considering the position of the wind turbine actually installed and the length of the cooperating line, we modeled the wind generators, offshore substation and the turbine step-up transformer. Changes of voltage when internal and external faults occurred is analyzed and the reactive power demand according to the amount of electricity generation is derived. And also phase angle stability and frequency is observed through a transient analysis. This paper clarify that there is no problem in the system when only offshore wind power is linked with the grid and try to present the reactive power amount necessary for maintaining the voltage of the point of cooperation appropriately.