• Title/Summary/Keyword: Electric strength

Search Result 1,174, Processing Time 0.026 seconds

Experimental Study on Tensile Strength of Straight-Line Connection Using Sleeve for Indirect Method (간접활선용 압축 슬리브를 이용한 전선 직선접속에 대한 실험적 연구)

  • Kim, Sang-Bong;Kim, Kang-Sik;Oh, Gi-Dae;Song, Won-Keun;Keum, Ui-Yeon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.85-91
    • /
    • 2021
  • With the social atmosphere of respect for human life and the increasing interest in safety of field workers, research and development is underway in various ways to transform direct live method into indirect live method in the field of distribution. As part of this measure, it was necessary to convert electric pole and complex facilities work from machining power distribution to indirect live operation, and install a straight connecting sleeve that connects cut wires for by-pass method, but it failed to meet the tensile strength standard when constructing a sleeve constructed by direct method. In this paper, the design factors were derived based on the case of overseas similar sleeves and the tensile strength evaluation of each variable was performed, based on the analysis of these test results, the method for securing tensile strength of straight-line access sleeves for indirect running was presented.

A Study on the Disinfection of Coliform Group in the Effluent of Sewage Plant by High Voltage Electric Field Treatment (고전압 전기장을 이용한 하수처리장 방류수 중의 대장균군 소독에 관한 연구)

  • Lee, Min-Gyu;Chung, Geun-Sik;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.17 no.7
    • /
    • pp.817-826
    • /
    • 2008
  • Using high voltage electric fields induced by high voltage AC (10-12 kV/cm, 20 kHz) and pulsed (20-30 kV/cm, 40 Hz) electric field generator as a semipermanent and environment-friendly disinfecting apparatus, the disinfection effect of coliform group in the effluent of sewage plant was investigated. The effects of electric field strength, treatment time, discharge area of a discharge tube, water quality factors (electric conductivity, pH and SS) on its death rate were examined. The death rate of coliform group was increased with increasing electric field strength and treatment time. For AC and pulsed electric field generator, the critical electric field strength was 6 kV/cm and 2 kV/cm, respectively, and the critical treatment time was 5 min and 2 min, respectively, regardless of electric field strength. Comparing the death rate of coliform group by AC and pulsed electric fields used in this study, its death rate was higher for the latter than the former, but did not increase linearly with increasing electric field strength. The results obtained for the effects of discharge area, electric conductivity, pH and SS on the death rate of coliform group using AC electric field (12 kV/cm, 20 kHz) were as follows: its death rate showed the trend to increase linearly with increasing discharge area; for the effect of electric conductivity, its death rate was increased with increasing electric conductivity, regardless of ionic species, increased with increasing cationic valency, but was similar between the same cationic valency; the pH $5{\sim}9$ used in this study did not affect its death rate; its death rate was decreased with increasing SS concentration.

Analysis of Tensile Strength Characteristics of ACSR due to White Rust (백화현상에 따른 ACSR 송선선로의 인장강도 특성 분석)

  • Park, Dae Keun;Ahn, Jung Hwan;Kwak, Minjun;Jung, Mihee;Choi, Cheol
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2022
  • In this study, a tensile test, one of the mechanical tests, was performed with the collected natural aging ACSR. In order to be used as basic data for predicting the replacement cycle of ACSR, the tensile strength with the normal cables was compared for cables which was caused white rust due to exposure of the hard-drawn aluminum wire surface. Among the ACSR wires collected from various regions, white rust was found on the surface of the small wire, and by checking the tensile strength of them, we would like to suggest the criteria for the ACSR replacement cycle, focusing on changes in mechanical properties.

A Fundamental Study on Bingham Characteristics of Dispersive Electro-Rheological Fluids (분산계 ER유체의 빙햄특성에 관한 기초적 연구)

  • Jang, Sung-Cheol;Yum, Man-Oh
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.48-55
    • /
    • 2003
  • This study investigates the effect of temperature and electric field strength on the Bingham characteristics of Electro-Rheological(ER) fluids which change their Yield shear stress and viscosity by temperature and electric field strength. It is found that under constant temperature the Yield sheal stress and viscosity of ER fluids proportionally increase with the applied electric field strength, and under constant applied electric field strength the Yield shear stress and viscosity of ER fluids decrease with the increasing temperature. These results are considered to be applied to the fluid and pneumatic power industry.

  • PDF

Improvement in the Super Low Core-loss Soft Magnetic Materials

  • Maeda, Toru;Sato, Atsushi;Mochida, Yasushi;Toyoda, Haruhisa;Mimura, Koji;Nishioka, Takao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1284-1285
    • /
    • 2006
  • We reported a P/M soft magnetic material with core loss value of $W_{10/1k}=68W/kg$, which is lower than that of 0.35mm-thick laminated material, by using high purity gas-atomized iron powder. Lack of mechanical strength and high cost of powder production are significant issues for industrial use. In order to achieve both low core loss and high strength by using inexpencive powder, the improvement of powder shape and surface morphology and binder strength was conducted. As the result, the material based on water-atomized powder with 80 MPa of TRS and 108 W/kg of core loss (W10/1k) was achieved.

  • PDF

A Study on the Ultimate Load of Electric Transmission Tower Considering Member Strength and Joint Strength (부재 내력과 접합부 내력을 고려한 송전강관철탑의 극한하중 도출에 관한 연구)

  • Kim, Woo-Bum;Jeon, Bum-Jun;Suh, Yong-Pyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.435-443
    • /
    • 2010
  • The current design practice of an electric transmission tower is based on the allowable stress design. Design strengths of the electric transmission tower's compression member are determined by buckling the strength of the member itself without considering joint strength. There is a possibility of a joint failure prior to the buckling of a member. Therefore, in this study, joint strength is calculated for various member forces, and the shape of joint and database of strength were established. These data was compared with the member strength obtained from previous research studies based on an equivalent nonlinear analysis technique. Finally, practical evaluation and design method to distinguish failure mode in an electric transmission tower member is proposed.

A Basic Study on Developing an Electrocharged Scrubber (전기하전식 세정집진장치 개발에 관한 기초 연구)

  • 김종호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • This study has been performed to develop an efficient electrocharged scrubber. To improve collection efficiency of the scrubber, electric-charger was installed at the forefront of the packed crossflow scrubbers, and an experiment of changing discharge electrode shape and fluctuating electric field strength was undertaken. After using a light-oil boiler for generation of particles in the about 80% weight of submicron size particles was exhausted. Collection characteristics of the electrocharged scrubber were similar to those of two-stage electrostatic precipitator. In this study the collection efficiency of submicron size particles has been much improved, compared with the previous ones. In an experiment of changing discharge electrode and electric field strength, a needle-spike shape wire electrode showed a higher collection efficiency than round shape wire. The collection efficiency becomes increased with an increase of electric field strength.

  • PDF

A Study on the Development of Electric Resistance Welding of DP780 Grade Steel for Hydroforming Tube (하이드로포밍용 DP780MPa급 강판의 전기저항용접 강관 개발에 관한 연구)

  • Park, Sungpill;Kwon, Yongjai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.279-286
    • /
    • 2015
  • To achieve lightweight design, research & development of various lightweighting technologies such as hydroforming are underway worldwide. In the case of hydroforming, application of ultra high strength steel is essential for weight reduction of the car. However, considering common high-strength carbon steel, it is not suitable to the actual hydroformed parts since the lack of formability. DP steel offers an outstanding combination of strength and formability as a result of their microstructure. DP steel has high strength and good formability but it's difficult to secure stable quality of welding section because of softening of weld section and chemical composition. Therefore, most of companies use LASER welding when making high strength tube. Electric resistance welding is excellent production method for steel tube manufacturing considering the productivity. Optimum electric resistance welding technology is needed to be developed for application of high strength hydroformed parts using DP steel. This study is comprehensive research & development from electric resistance welding to actual formabililty evaluation.

Flow Rate-Pressure Drop Characteristics of Dispersive ER Fluid According to Change of Electric Field Strength in Clearance between Parallel Plates (평행평판 간극에서 전기장의 강도변화에 따른 분산계 ER유체의 유량-압력강하 특성)

  • 장성철;염만오;김도태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.78-83
    • /
    • 2003
  • Electro-rheological(ER) fluids are suspensions in which rheological properties show an abrupt change with variation of electric fields. We modeled the parallel-plates relating to ER-Valve system and yielded shear stress according to the strength of electric field. The purpose of the present study is to examine the flow characteristics of ER fluids according to the strength of electric field between parallel-plates. Then the steady relationship between pressure drop and flow rate of the ER fluids between parallel-plates under application of an electric fields was measured. The pressure drop and flow rates of ER fluids under the application of electric fields for steady flow were measured. For the experiment, we used the ER fluids, 35w% zeolite having hydrous particles and differential pressure gauge. This test reviewed experiment for the special changes of ER fluids in the steady flow condition.

A Experimental Study on Improvement of Marine Clay through the Electrolytic Leaching Effect in Aluminum Electrode (알루미늄 전극의 용출에 따른 해성점토의 개량에 관한 실험적 연구)

  • Kim, Jong-Yun;Yun, Myung-Suk;Jung, Seung-Yong;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1173-1180
    • /
    • 2006
  • In this study, aluminum electrodes were put in marine clay which was taken from the south coast in Korea to increase the undrained shear strength by inducing the densification and cementation between clay particles and precipitates which were developed by electric decomposition in an electrode. To raise the cementation rate and reduce treatment time, high electric current (2.5A) was applied in each electrode at a semi-pilot scale soil box with marine clay. After the tests, the undrained shear strength was measured at designated points using a static cone penetration test device and sampling was conducted simultaneously in order to measure water content, pH and electric conductivity which would be the key for configuring the cementation effects indirectly. In the results of electric decomposition in aluminum electrode, the measured shear strength was increased considerably compared to the initial shear strength because of the cementation effect between iron ions and soil particles.

  • PDF