• Title/Summary/Keyword: Electric pump

Search Result 375, Processing Time 0.031 seconds

Study on the Performance Characteristics of the Roof Mounted Electrical Air Conditioning System Using Inverter Scroll Compressor (인버터 스크롤 압축기를 적용한 루프형 전동공조시스템의 냉방성능특성에 관한 연구)

  • Lee, Moo-Yeon;Won, Jong-Phil;Lee, Dong-Yeon;Cho, Chung-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4308-4313
    • /
    • 2011
  • The objective of this study is to investigate the cooling performance of the roof mounted air-conditioning system using electric driven scroll compressor for zero emission vehicles. This air conditioner with air source was used R-134a as a refrigerant and tested under various operating conditions such as refrigerant charge amount and indoor temperature, and compressor frequencies. Experimental results revealed that at all tested compressor frequencies, heat transfer rate of the evaporator increased and the cooling COP increased with the indoor temperature. In addition, the heat transfer rate of the evaporator was over 25.0kW sufficient for the cooling loads of an electric bus.

Economic Investigation of Small Scale Cogeneration System in a School Dormitory of Busan Region (부산지역 학교 기숙사에서의 소형열병합발전 시스템의 경제성 분석)

  • Song, Jae-Do;Ku, Bon-Cheol;Kang, Yul-Ho;Park, Jong-Kyu;Lee, Jae-Keun;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.657-662
    • /
    • 2012
  • The cogeneration system can operate at efficiencies greater than those achieved when heat and power are produced in separate. The optimal system can be determined by selecting the auxiliary system combined with cogeneration system. In the present study, economic investigation has been conducted with the cogeneration electric heat pump(EHP) system and the cogeneration absorption chiller(AC) system to install in a school dormitory. To analyze life cycle cost(LCC), cost items such as initial investment costs, annual energy costs and maintenance costs of each system have been considered. The initial investment cost is referred to the basis of estimated costs, and annual energy costs such as the electric power and gas consumption are based on the data in a school dormitory. LCC is evaluated with the present worth method. Considering investigated results, the initial investment cost of the cogeneration EHP system is more profitable about 24% than that of the cogeneration AC system. The energy cost of the cogeneration EHP system is more profitable about 8% than the cogeneration AC system. The LCC shows that the cogeneration EHP system is the most effective system in the school dormitory.

Chemical Resistance and Field Trial of 3D-Printed Plastic Ball Bearing Used in Electric Motors for Chemical Processes (화학공정용 전동기에 사용된 3D 프린팅 플라스틱 볼베어링의 내화학성 평가 및 현장적용 연구)

  • Youngjun Kwon;Myounggyu Noh
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Fluid pumps in chemical processes are typically driven by electric motors. Even if the motor is separated from the pump with seals, wear resulting from friction and misalignment can lead to leakage of chemical fluid, causing corrosion in the bearing supporting the motor, and, eventually, failure of the motor. It is thus a standard procedure to replace bearings at regular intervals. In this article, we propose 3D-printed plastic ball bearings for use as an alternative to commercial stainless-steel ball bearings. The plastic bearings are easy to manufacture, require less time to replace, and are chemically resistant. To validate the applicability of the plastic bearings, we first conducted chemical resistance tests. Bearings were immersed in 30 caustic acid and 30 nitric acid for 30 min and 24 h, respectively. The test results showed no corrosive damage to the bearings. A test rig was set up to compare the performance of the plastic bearings with that of the commercially equivalent deep-groove ball bearings. Loading test results showed that the plastic bearings performed as well as the commercial bearing in terms of vibration level and load-handling capability. Finally, a plastic bearing was subjected to a clean-in-place process for three months. It actually outperformed the commercial bearing in terms of chemical resistance. Thus, 3D-printed plastic bearings are a viable alternative to stainless-steel ball bearings.

A study on the THD reduction of single phase 2 level inverter for grid connection for ship (선박 계통연계형 단상 2레벨 인버터의 THD 저감에 관한 연구)

  • Kim, Jung-Hoon;Kim, Sung-Hwan;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.64-69
    • /
    • 2014
  • There are 440V and 220V electric source in ship. A 440V source is used to drive the power system such as crane and winch on deck and pump in engine room, and a 220V source is used to drive the power source for residential zones, control devices in engine room. In this paper, we made single phase inverter system for grid connection with 220V source for ship, and analyzed THD(Total harmonic distortion) by variation of parameters of L-C low pass filter and deadtime of inverter switching.

The Development Measuring System of Temperature Effect to Produce Electric Power of Solar Cell

  • Sadmai, Ong-art
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.104-113
    • /
    • 2015
  • This paper focuses on a temperature effects on a PV panel which has been installed in Thailand. The main objective is cleaning PV panels and reduce temperature of PV panel by water injects from waterway and experimental results of PV power what it is difference. This project is designed by PLC control system which water injects and control PV temperature, In addition, this project consists of hardware and software such as water pump, water injection and PLC control has been automatically and it can be control system manually. The automatic control system is working when PV temperature rises up over 45 degree Celsius after that the pumping machine would inject water to the surface of PV panels and it must be stop when the PV panel temperature comes down less than 45 degree Celsius. The result of actual experimental found that the control system has been done correctly under specify condition. The experimental has been shown electrical data before and after water injects on PV system found that the electrical power a bit increases and The energy has been taken from PV panel less than energy consumption equipment of control system which taken to operate the water injecting system.

Study for Reduction Effect of Pool Top Radiation in Research Reactor by Using Ion Exchanger of Hot Water Layer (고온층계통의 이온교환기에 의한 연구로 수조 상부 방사선의 저감효과에 대한 연구)

  • Park, Yong-Chul;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.40-47
    • /
    • 1999
  • A hot water layer (HWL hereinafter) was installed at the depth of 1.2 m from the pool surface to reduce the radiation level at the pool top. After the HWL system was improved by the replacement of the filter with the Ion Exchanger to capture the Na-24, to purify the pool water of HWL and finally to reduce the radiation at the pool top. It was confirmed by the performance test of the pump and the measurement of the pressure difference through the Ion Exchanger and the strainer, that the flow characteristics of HWL system was not adversely affected after the system modification. Also the flow analysis using the pressure loss coefficients of the Ion Exchanger and strainer, calculated by the Darcy formula, could predict the flow variations by pressure changes within $10\%$ error in comparison with the field test results. It was also confirmed that HWL was maintained with the depth of 1.2 m from the pool surface because each electric water heater was electrically and thermodynamically maintained at 30 kW and the temperature of HWL was maintained with $5^{\circ}C$ higher temperature than that of pool water. Finally, it was confirmed that the pool top radiation was saturated and stabilized below 10000 nG/hr within 24 hours as the ion exchanger captured the main nucleus, Na-24 and purified the pool water of HWL.

  • PDF

Characteristic of Electric Generation for the Water Flow Rate in Thermoelctric Generator Using Hot Water (온수를 이용한 열전발전기에서 유량변화에 따른 발전 특성)

  • Woo, Byung-Chul;Lee, Hee-Woong;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1333-1340
    • /
    • 2002
  • The objective of this study is to develop a thermoelectric generation system which converts unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper presents applicability of a commercially available thermoelectric generator f3r waster heat recovery. The test facility consists of water heater, pump, thermoelectric module and aluminium tubes and hot and cold water is used as heat source and sink fluids. It is shown that the three components of thermoelectric research exist in manufacturing a thermoelectric generator. The first component is fabrication of thermoelectric materials, the second is manufacturing of thermoelectric generator with 32 thermoelectric modules. The last one is characteristic measuring of thermoelectric generator with 32 thermoelectric modules of two types, cooling and power purpose. It was found that the rate of cold and hot water is 25 and 37 liter per minute and the maximum power of thermoelectric generator is 28Watts and its efficiency is 1.04%.

The Fault Diagnosis of Marine Diesel Engines Using Correlation Coefficient for Fault Detection (이상감지 상관계수를 이용한 선박디젤기관의 고장진단시스템에 관한 연구)

  • Kim, Kyung-Yup;Kim, Yung-Ill;Yu, Yung-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.18-24
    • /
    • 2011
  • This paper proposes fault diagnosis system which is able to diagnose the fault from present operating condition by analyzing monitored signals with present ship monitoring system without additional sensors. For this all kinds of ship's engine room monitored data are classified with combustion subsystem, heat exchange subsystem and electric motor and pump subsystem by analyzing ship's operation data. To extract dynamic characteristics of these subsystems, log book data of container ship of H shipping company are used.

A Study on the cooling system design for electric propulsion system in submarine (수중체 전기추진시스템용 냉각체계 설계에 관한 연구)

  • Oh, Jin-Seok;Jung, Sung-Young
    • Journal of Navigation and Port Research
    • /
    • v.36 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • In this paper, we analyze the current submarine cooling system and study control algorithms for cooling system. Cooling system are installed in the submarine propulsion motor to protect the motor from high-temperature by iron loss and copper loss. The cooling system control the sea water and fresh water pump RPM to keep the motor temperature stable by external environment and motor RPM holding time. The cooling system simulation program is made for checking the cooling performance, and simulation is performed with various control strategy. The results with proposed cooling algorithm is shown to improve the thermal stability and efficiency of cooling system.

Design and Implementation of a Fault-Tolerant Magnetic Bearing System

  • Park, B.C.;Noh, M.D.;Ro, S.K.;Kyung, J.H.;Park, J.K.
    • KSTLE International Journal
    • /
    • v.4 no.2
    • /
    • pp.37-42
    • /
    • 2003
  • One of the obstacles for a magnetic bearing to be used in the wide range of industrial applications is the failure modes associated with magnetic bearings, which we don't expect for conventional passive bearings. These failure modes include electric power outage, power amplifier faults, position sensor faults, and the malfunction of controllers. Fault-tolerant magnetic bearing systems have been proposed so that the system can operate in spite of some faults in the system. In this paper, we designed a fault-tolerant magnetic bearing system for a turbo-molecular vacuum pump. The system can cope with the actuator/amplifier faults which are the most common faults in a magnetic bearing system. We implemented the existing fault-tolerant algorithms to experimentally prove the adequacy of the algorithms for industrial applications. As it turns out, the system can operate even with three simultaneously failing poles out of eight actuator poles.