• Title/Summary/Keyword: Electric pump

Search Result 375, Processing Time 0.03 seconds

Comparison of the Efficiency between a Remodeled Bubble Generating Pumps for an Aquarium Fish and the Existed Commercial Air Sampler for the Sampling of Ambient Air Asbestos (공기 중 석면농도 분석시 관상어용 기포발생기를 개조한 장치와 기존의 상업용 시료 채취기와의 성능 비교)

  • Jang, Bong-Ki;Tak, Hyun-Wook;Song, Su-Jin;Jo, Bong-Hyun;Kim, Yeong-Ji;Son, Bu-Soon;Lee, Jong-Wha
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.492-500
    • /
    • 2014
  • Objectives: The purpose of this study is to estimate the applicability of regional sample collection of environmental samples. The concentration of asbestos fibers were analyzed with two devices. One was an existing commercial air sampling pump that has been proved to be accurate and exact, and the other is a remodeled pump for sample collection which was made from an electric bubble generator originally designed for aquarium fish. Samples were collected with the two devices under the same environmental conditions and collection equipment. A comparative analysis of the concentration of ambient asbestos fiber was then performed. Methods: Based on previous research, six farmhouses with asbestos fiber slate roofs known to have high concentrations of asbestos fiber were selected. Using the existing commercial air sampling pump and the remodeled electric bubble generator, four to seven samples were collected each day one meter downwind from the edge of the slate roof at high volume (about 4 L/min) and low volume (about 1.4 L/min). The analyzer responsible for sample quality control of asbestos fibers counted the number of asbestos fibers with a phase microscope. Results: The rates of flow change of the existed sampler and the remodeled pump at high volume were 0.82% and 0.17%, respectively. The rates of flow change at low volume were 3.83% and 1.09%, but there was not significant difference. The rates of flow change are within the error range (${\pm}5%$) of OSHA analyzing methods. For the high volume sampler, the average asbestos fiber concentration in the air collected by the existed sampler is 6.270 fibers/L and for the remodeled one 5.527 fibers/L, not a significant difference. For the low volume sampler, the average asbestos fiber concentration in the air collected by the existed sampler is 7.755 fibers/L and for the remodeled one 7.706 fibers/L, not a significant difference. The total area of the slate roof of the targeted farmhouse has an effect on the concentration of asbestos fibers in the air from the existing pump and the remodeled one (p<0.01). Conclusions: The sampling function between the existing commercial pump and the remodeled one shows little difference. Therefore, the remodeled pump is considered a pump with a good availability for collecting ambient air asbestos samples.

A Study on Integrated Air-conditioning System for Electric Vehicle Based 1-ton Class Commercial Vehicle (전기차 기반의 1톤급 상용차용 통합공조 시스템에 관한 연구)

  • Baek, Soo-Whang;Kim, Chul-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.361-368
    • /
    • 2019
  • This paper is a study on integrated air-conditioning system for 1-ton class commercial vehicle based on electric vehicle. In the case of an electric commercial vehicle, since the opening and closing of the door is frequently performed in order to get in and out of the cargo, the heat loss largely occurs. Therefore, the heating and cooling load is required to be larger than the electric vehicle. As a result, the energy consumed by the heating and cooling system is larger than the passenger electric car in order to satisfy the heat comfort required by passengers. In order to overcome these disadvantages, we performed research using an efficient integrated air conditioning system. Finally, the design and analysis of a heat pump system for heating and a electrical compressor for cooling need to be proceed to develop a high-efficiency air conditioning system for improving the commerciality of 1 ton-class electric trucks and expanding the industrial ecosystem in the electric truck sector.

Numerical Analysis of Electromagnetic Characteristic of High Voltage/Current Cable for Fuel Cell Electric Vehicle (FCEV) (수소 연료전지 차량용 고전압 케이블의 전자파 특성 수치해석에 관한 연구)

  • Lee, Soon-Yong;Choi, Jae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2010
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) is essential. BOP systems are used many not only for motors in water pump, air blower, and hydrogen recycling pump but also inverters for these motors. Since these systems or components are connected by high voltage cables, EMC (Electromagnetic compatibility) analysis for high voltage/current cable is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields of high current/voltage cable for FCEVs is studied. From numerical analysis results, time harmonic magnetic field strength of high current/voltage cable have difference of 20~28 dB according to phase. EMI result considered ground effect of FECV at 10 m shows difference of 14.5 dB at 30 MHz and 2.8 dB at 230 MHz compared with general cable.

Influence of Blade Outlet Angle and Blade Thickness on Performance and Internal Flow Conditions of Mini Centrifugal Pump

  • Shigemitsu, Toru;Fukutomi, Junichiro;Kaji, Kensuke
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.317-323
    • /
    • 2011
  • Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields; automobile radiator pump, ventricular assist pump, cooling pump for electric devices and so on. Further, the needs for mini centrifugal pumps would become larger with the increase of the application of it for electrical machines. It is desirable that the mini centrifugal pump design be as simple as possible as precise manufacturing is required. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, we started research on the mini centrifugal pump for the purpose of development of high performance mini centrifugal pumps with simple structure. Three types of rotors with different outlet angles are prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the outlet angle on performance and internal flow condition of mini centrifugal pumps. In addition to that, the blade thickness is changed because blockage effect in the mini centrifugal pump becomes relatively larger than that of conventional pumps. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-Fluent) to investigate the internal flow condition. It is clarified from the experimental results that head of the mini centrifugal pump increases according to the increase of the blade outlet angle and the decrease of the blade thickness. In the present paper, the performance of the mini centrifugal pump is shown and the internal flow condition is clarified with the results of the experiment and the numerical flow analysis. Furthermore, the effects of the blade outlet angle and the blade thickness on the performance are investigated and the internal flow of each type of rotor is clarified by the numerical analysis results.

Study on the Application of the Electric Drive System of Fuel Pump for Diesel Engine of Commercial Vehicle using HILS (HILS기반 상용차 디젤엔진용 연료펌프의 전기구동 시스템 적용에 관한 연구)

  • Ko, Youngjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.166-174
    • /
    • 2014
  • Fuel injection pressure has steadily increased in diesel engines for the purpose of improving fuel efficiency and cleaning exhaust gas, but it has now reached a point, where the cost for higher pressure does not warrant additional gains. Common rail systems on modern diesel engines have fuel pumps that are mechanically driven by crankshaft. The pumps actually house two pumping module inside: a low pressure pump component and a high pressure pump component. Part of the fuel compressed by the low pressure component returns to the tank in the process of maintaining the pressure in the common rail. Since the returning fuel represents pumping loss, fuel economy improves if the returned fuel can be eliminated by using a properly controled electrical fuel pump. As the first step in developing an electrical fuel pump the fuel supply system on a 6 liter diesel engine was modeled with AMESim to analyze the workload and the fuel feed rate of the injection pump, and the results served as basis for selecting a suitable servo motor and a reducer to drive the pump. A motor controller was built using a DSP and a program which controls the common rail pressure using a proportional control method based on the target fuel pressure information from the engine ECU. A test rig to evaluate performance of the fuel pump is implemented and used to show that the newly developed electrically driven fuel pump can satisfy the fuel flow demand of the engine under various operating conditions when the rotational speed of the pump is adequately controlled.

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.

A study of frequency control of an inverter heat pump for indoor air temperature adjustment (실내온도조절을 위한 인버터 열펌프의 주파수 제어에 관한 연구)

  • Park, Yun-Cheol;Min, Man-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1262-1272
    • /
    • 1997
  • An experimental study on the frequency control of an inverter heat pump to get the desired indoor room temperature has been conducted for the performance characteristics during the steady, 4, 8, and 16 step frequency operations. The heat pump model used in this study was operated to meet the experimental conditions of ASHRAE standard. The performance of the system was tested by measuring the temperature and pressure of the refrigerant, and cooling capacity, power consumption, etc. of the system. As the controlling frequency steps increased, the running time of the compressor increased as well as the electric consumption of the system and the cooling energy due to the wall heating load. However, the average cooling COP was improved.

Hydraulic Performance Test of a Turbopump (터보펌프의 수력 성능시험)

  • Hong Soon-Sam;Kim Dae-Jin;Kim Jin-Sun;Choi Chang-Ho;Kim Jinhan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.243-247
    • /
    • 2005
  • Hydraulic performance test was conducted for a fuel pump of a liquid rocket engine turbopump. The pump driven by an electric motor was tested in water environment. It is experimentally shown that the inducer had very small effect on the pimp's head and efficiency but great effect on the pump's cavitation performance. Additionally, inducer test was carried out to investigate the effect of the inducer on the pump in detail, and it was found that the pump had a critical cavitation number when the inducer head dropped by $55\%$.

  • PDF

Heat Transfer Analysis and Cooling Design for Crude Oil Pump System (원유펌프시스템의 열전달해석 및 냉각설계)

  • Kim, Wan-Gi;Lee, Joon-Yeob;Kwon, Jung-Lock;Kim, Hea-Choen
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2017-2022
    • /
    • 2008
  • The crude oil pump system is the equipment for transporting crude oil and it consists of 3 major components, a motor and an impeller which discharge underground crude oil, a pipestack that transmits the cooling oil and power, and a cooling oil unit & junction box that provides cooling oil and electric power. When considering the system characteristics that it has to be installed at a depth of deeper than 100 m, a design technology for the efficient control of the heat occurring at a conductor and motor is necessary and it is the essential factor for ensuring system durability. In this paper, therefore, cooling oil flow has been calculated to satisfy the limit value of the system temperature by analyzing heat flow considering the related losses such as loss of conductor, contact resistor loss at the conductor connection, and operation loss of motor. And the operation temperature has been set up based on the temperature of crude oil and the heat of motor and conductor. Also, a design for cooling of crude oil pump system has been proposed by calculating the operation pressure loss and selecting the capacity of a cooling oil pump and a heat exchanger.

  • PDF

Economical Analysis of a Small Capacity Heat Pump utilizing Heat Sources of Air, Geothermal and Underground Water Tank using Dynamic Simulation (동특성 시뮬레이션을 이용한 공기, 지열 및 지하 저수조 열원 소형 열펌프의 경제성 분석)

  • Yang, Chul-Ho;Kim, Youngil;Chung, Kwang-Seop
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 2012
  • Due to reinforcement of international environment regulation and high oil prices, interest in renewable energy is growing. Countries participating in UNFCCC are continuously putting efforts in reducing greenhouse gas after enforcing Kyoto Protocol into effect on Feb, 2005. Energy used in buildings, which relies heavily on fossil fuel accounts for about 24% of total energy consumption. In this study, air, geothermal and water source heat pump systems for an 322 $m^2$ auditorium in an office building is simulated using TRNSYS version 17 for comparing energy consumptions. The results show that energy consumptions of air, geothermal and water source heat pumps are 14,485, 10,249, and 10,405 kWh, respectively. Annual equal payments which consider both initial and running costs become 5,734,521, 6,403,257 and 5,596,058 Won. Thus, water source heat pump is the best economical choice.