• Title/Summary/Keyword: Electric power energy cost

Search Result 396, Processing Time 0.032 seconds

Simulation and Energy Cost Calculation of Encapsulated Ice Storage System (캡슐형 빙축열시스템에 대한 운전 시뮬레이션 및 에너지비용 분석)

  • Lee, K.H.;Joo, Y.J.;Choi, B.Y.;Kim, S.J.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.63-73
    • /
    • 1999
  • Ice storage systems are used to shift the peak load in day time into night time in summer. This paper describes a system simulation of partial ice storage system composed of an encapsulated ice storage tank, a screw compressor chiller, a heat exchanger, and a brine pump. For the system simulation, a one-dimensional model of ice storage tank is developed and validated by comparison with the performance data from measurements of an ice storage tank installed at a building. The control strategies considered in this study are chiller priority and storage priority being used commercially. The system is simulated with design cooling load of 600 RT peak load in design day and with off-design day cooling load, and the electric energy costs of the two control strategies for the same system size are compared. As a result of calculation, the energy consumption in a week for storage priority is higher than that for chiller priority control. However due to lower cost of night electric charge rate, energy cost for storage priority control is lower than chiller priority.

  • PDF

Revenue Maximizing Scheduling for a Fast Electric Vehicle Charging Station with Solar PV and ESS

  • Leon, Nishimwe H.;Yoon, Sung-Guk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.315-319
    • /
    • 2020
  • The modern transportation and mobility sector is expected to encounter high penetration of Electric Vehicles (EVs) because EVs contribute to reducing the harmful emissions from fossil fuel-powered vehicles. With the prospective growth of EVs, sufficient and convenient facilities for fast charging are crucial toward satisfying the EVs' quick charging demand during their trip. Therefore, the Fast Electric Vehicle Charging Stations (FECS) will be a similar role to gas stations. In this paper, we study a charging scheduling problem for the FECS with solar photovoltaic (PV) and an Energy Storage System (ESS). We formulate an optimization problem that minimizes the operational costs of FECS. There are two cost and one revenue terms that are buying cost from main grid power, ESS degradation cost, and revenue from the charging fee of the EVs. Simulation results show that the proposed scheduling algorithm reduces the daily operational cost by effectively using solar PV and ESS.

Heat-Electric Power Ratio Optimization To Maximize Profit of a Cogeneration Power Plant (열병합 발전기 수익 극대화를 위한 열전비 최적화)

  • Kim, Gun-Hoe;Lee, Jae-Heon;Moon, Seung-Jae;Chang, Taek-Soon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.381-384
    • /
    • 2008
  • This paper presents an operational technique to maximize profit of a cogeneration power plant. To minimize errors in a loss and gain analysis of a cogeneration power plant, the energy sale profit in the cost-based-pool electric power trade market, the heat sale profit, and the supplementary fund profit for electric power industry are taken into consideration. The objective is to optimize the heat-electric power ratio to maximize profit of a cogeneration power plant. Furthermore, the constrained bidding technique to optimize heat-electric power ratiocan be obtained. Profits from of a cogeneration power plant are composed of three categories, such as the energy sale profit in the cost-based-pool electric power trade market, the heat sale profit, and the supplementary fund profit for electric power industry. Profits of a cogeneration power plant are varied enormously by the operation modes. The profits are mainly determined by the amount of constrained heat generation in each trading time. And the three profit categories arecoupled tightly via the heat-electric power ratio. The result of this case study can be used as a reference to a cogeneration power plant under the power trading system considered in this case.

  • PDF

The improvement in operating rules of Cost Based Pool(CBP) considering the increasing Renewable Energy Capacity (신재생에너지 보급확대에 따른 국내전력시장 운영방안)

  • Lee, Jae-Gul;Nam, Su-Chul;Shin, Jeong-Hoon;Kim, Tae-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.580-583
    • /
    • 2008
  • As the construction of renewable energy generators is on the rise and gets bigger in size, researchers pay more and more attention to the impact of such facilities on the power market as well as on the stability of power grid system. In Korea, while studies on the latter, including calculating the marginal capacity of renewable energy generators, is being made, those on the former has not yet been performed. As such, this paper analyses the impact of a big renewable energy generators on the price and transaction cost of domestic power market and proposes ideas to minimize such influence by applying the technology of forecasting renewable energy.

  • PDF

RELIABLE ROLE OF NUCLEAR POWER GENERATION UNDER CO2 EMISSION CONSTRAINTS

  • Lee, Young-Eal;Jung, Young-Beom
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.655-662
    • /
    • 2007
  • Most decision makers in the electricity industry plan their electric power expansion program by considering only a least cost operation, even when circumstances change with differing complexities. It is necessary, however, to analyze a long-term power expansion plan from various points of view, such as environmental friendliness, benefit of a carbon reduction, and system reliability, as well as least cost operation. The objective and approach of this study is to analyze the proper role of nuclear power in a long-term expansion plan by comparing different scenarios in terms of the system cost changes, $CO_2$ emission reduction, and system reliability in relation to the Business-As-Usual (BAU). The conclusion of this paper makes it clear that the Korean government cannot but expand the nationwide nuclear power program, because an increased energy demand is inevitable and other energy resources will not provide an adequate solution from an economic and sustainability point of view. The results of this analysis will help the Korean government in its long-term resource planning of what kinds of role each electric resource can play in terms of a triangular dilemma involving economics, environmental friendliness, and a stable supply of electricity.

Development of Lifetime Assessment and Rehabilitation Cost Calculation Methods for Overseas ROMM Project

  • Hyun, Jung-Seob;Kim, Doo-Young;Hwang, Kwang-Won;Park, Min-Gyu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • Regarding the implementation of ROMM project (Rehabilitation, Operation, Maintenance & Management), which is one of overseas development projects, it is very important to diagnose the exact current status of aged thermal power plant. However, when people visit the power plant for the purpose of prediagnosis to implement the ROMM project, most target power plants for diagnosis, in general, are under operation. This can be a big interference factor to diagnose the exact current status of power plants. Therefore, in order to solve such interference factor, based on the 30 years of know-how in the field, the present study has developed a regression curve for a simple life time assessment and the calculation of rehabilitation cost that may be used as a reference relatively for the quantitative diagnosis on the status of a relevant power plant even during the operation of the power plant.

Potential Impacts and Energy Cost of Grid-Connected Plug-in Electric Vehicles (전력망 충전식 전기자동차의 영향 및 에너지비용)

  • Lee, Kyoung-Ho;Han, Seung-Ho
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.92-102
    • /
    • 2010
  • Plug-in hybrid electric vehicle(PHEV) is a hybrid electric vehicle (HEV) with more added battery capacity that can be recharged from the electric power grid. Plug-in battery electric vehicle(PBEV) is a pure electric vehicle that uses only electric motor using electricity from battery that recharged from the power grid. PHEV and PBEV requires recharging of batteries in the vehicles from electric power grid. Recently, PHEVs and PBEV are being developed around the world. It is important to understand how these electric vehicles affect power demands and carbon dioxide emissions. From vehicle customer viewpoint, running energy cost will be imporatnt factor to consider. This paper analyzes the potential impacts of PHEVs and PBEVs on electric power demand, and associated CO2 emissions in 2020 with an projection that the vehicles will be penetrated with 10% market share. Energy costs for the vehicles are also calculated and compared with the conventional combustion vehicle.

Methodology and Application of Avoided Cost Calculation for Natural Gas and District Heating DSM programs (천연가스.지역난방 수요관리 투자사업의 회피비용 산정기법 개발 및 적용)

  • Choi, Bong-Ha;Park, Sang-Yong;Lee, Deok-Ki;Park, Soo-Uk
    • IE interfaces
    • /
    • v.20 no.3
    • /
    • pp.353-362
    • /
    • 2007
  • This paper proposed the calculation method of the avoided cost for natural gas and district heating DSM programs. And the proposed method is applied to real DSM programs. The avoided cost for natural gas consists of commodity avoided cost, supply equipment avoided cost, storage equipment avoided cost, and electric power avoided cost. In case of the district heating, avoided cost consists of heat generation equipment avoided cost, heat energy avoided cost, environment avoided cost, and electric power avoided cost. This method can be used to evaluate the benefit of DSM programs quantitatively in cost. Therefore, this method can contribute to make the cost-effectiveness evaluation system and to operate the DSM programs for natural gas and district heating effectively.

The Analysis of Energy Cost Adopting an Electric Residence using Historical Energy Consumption Data (에너지소비 데이터를 이용한 전전화 주택 도입시 에너지 사용량 분석)

  • Lee, Jun-Kyu;Shin, Hee-Sang;Cho, Sung-Min;Lee, Hee-Tae;Jang, Sung-Kyu;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.131-137
    • /
    • 2010
  • Change of the energy used in a house can be separated from LNG, and electric power. The electric power consumption of a house is more increasing than LNG. The interest for electric houses is rising due to energy saving and low carbon emission. Accordingly, the amount of energies and cost are analyzed consumed in a house using cumulative energy consumption. The result of analysis, amount of electric power, is more increase. In comparison, the use volume of city gas is more decrease. In this paper, the use volume of energy resource is analyzed using historical energy consumption data in the past 25 years. In addition, expected electrical power and heating energy is analysed adopting an Electric Residence.