• Title/Summary/Keyword: Electric insulation material

Search Result 251, Processing Time 0.031 seconds

Bending strength of GFRP for Insulator according to Winding Angle (전기절연물용 GFRP의 winding 각도에 따른 굽힘강도)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Lee, Tae-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.429-432
    • /
    • 2004
  • The demand for electric power keeps growing, and tends to be more effective. Polymer insulators have been manufactured for almost twenty years and the excellent insulation performance of polymer insulators is attractive. Polymeric materials are now widely used as a replacement for inorganic materials such as porcelain or glass for the outdoor insulation of high voltage insulation. GFRP has been used widely as a core materials for polymer insulators. This paper reports the mechanical properties of GFRP for insulators. The bending strength was simulated and evaluated according to the winding angle. The fiber orientation in GFRP has a great effect on the strength of GFRP because the strength of GFRP mainly depends on the strength of fiber. Results of simulated and evaluated strength of GFRP were compared each other. The simulated strength of GFRP rod was different from the evaluated strength. It was caused that the shear stress had a great effect on the strength of GFRP although the stress of parallel direction of GFRP was much higher.

  • PDF

Electrical and Mechanical Properties of Epoxy/Heterogeneous Inorganic Composites Materials for the Application of Electric Power GIS Appliances (친환경 GIS용 전력기기의 적용을 위한 에폭시 이종무기물 복합재료의 전기적, 기계적 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1633-1640
    • /
    • 2018
  • Epoxy resin is a polar thermosetting polymer that is widely employed in different branches of industry and everyday life, due to their stable physical and chemical properties. Of all the polymer materials currently being used in the electrical insulation industry, epoxy resin is the most widely used kind, chosen as the base polymer material in the present study. Composites were prepared according to the mixing ratio (MS: MA, 1: 9, 3: 7, 5: 5, 7: 3, 9: 1)of mixture for Heterogeneous Minerals(Micro Silica:MS, Micro Alumina:MA) (MS+MA). We have investigated for AC electrical insulation breakdown characteristics and the dielectric properties (permittivity, dielectric loss, and conductivity) with frequency changes. The electrical AC insulation breakdown performance was improved with the increase of the mixing ratio of MS according to heterogeneous mineral material mixture(MS+MA). As Dielectric properties, the dielectric constant and dielectric loss increased with decreasing frequency and decreased with increasing MS content ratio of heterogeneous mineral mixture. Tensile strength and flexural strength according to the mixing ratio (MS + MA) of epoxy / heterogeneous mineral mixture were studied by mechanical properties. The performance of mechanical tensile and flexural strength was significantly improved as the fill contents ratio of MS increased.

Stiffness effect of the lamination pressing force for laminated rotor (적층된 로터에서 적층판 압착력의 강성 효과)

  • 김영춘;박철현;박희주;문태선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.565-568
    • /
    • 2002
  • A lot of rotating machines are being used in the industrial world and electric motor and generator take the most part of it. When it comes to the electric motor and generator, we can not help thinking about the eddy current because it brings a loss of electric and can be a important reason of the heat generation. To attenuate eddy current. laminated silicon steel sheets are being used in general. Especially, laminated rotor is being used for rotating part of the electric motor and generator and it decreases electrical loss and heat generation but we can be faced with another problem. In general, most of the motor and generator can be normally operated under 3600rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed. large scale and high precision in industrial world. The critical speed can be determined from the inertia and stiffness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape. lamination material and shape. insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method.

  • PDF

Mechanical and Electrical Properties of Cycloaliphatic Epoxy/Silica Systems for Electrical Insulators for Outdoor Applications

  • Park, Jae-Jun;Kim, Jae-Seol;Yoon, Chan-Young;Shin, Seong-Sik;Lee, Jae-Young;Cheong, Jong-Hoon;Kim, Young-Woo;Kang, Geun-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.82-85
    • /
    • 2015
  • Mechanical and electrical properties of epoxy/silica microcomposites were investigated. The cycloaliphatic- type epoxy resin was diglycidyl 1,2-cyclohexanedicarboxylate and the curing agent was of an anhydride type. To measure the glass transition temperature (Tg), dynamic differential scanning calorimetry (DSC) analysis was carried out, and tensile and flexural tests were performed using a universal testing machine (UTM). Electrical breakdown strength, the most important property for electrical insulation materials, and insulation breakdown strength were also tested. The microcomposite with 60 wt% microsilica showed maximum values in mechanical and electrical properties.

Biodegredible material application of insulation oil of OF CABLE (OF 케이블 절연유의 환경친화적 자재 적용)

  • Kim, Jong-Won;Lee, Kee-Soo;Ha, Jae-Cheong;Choi, Bong-Nam;Lee, Seung-Yol
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2023-2025
    • /
    • 2000
  • Globally, movements for an environmental preservation have been further extended in all the areas of industries. In the manufacturing area. environment-friendly properties for all the manufactured products are increasingly required by many national standards. For EHV oil-filled cables. Hard Alkylbenzen has been applied as an impregnated insulating oil. But as it flows into the soil during failures, such as oil leakage, the oil is not dissolved by microbes and then causes an environmental pollution. Recently some countries are increasingly requiring Soft Alkylbenzen which is dissolved by microbes. This paper describes the electrical and environmental properties of Soft Alkylbenzen. applied for a 230kV oil-filled cables at a Singapore's project.

  • PDF

Highly functional materials for Electric power (초전도 전력용 재료)

  • Lee, Sang-Heon;Koo, Kyoung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2152-2153
    • /
    • 2011
  • According to a sharp increase in demand for electricity supply secure, and $CO_2$ regulation in accordance with global environmental problems and to solve problems, etc. These factor less pollution, higher energy conversion hyoyulin way that the new electrical equipment, nano-composites The rapid degeneration of the unit study utilizing the power that is required is Free. Accordingly, cables, transformers and switchgear (GIS)-capacity of power equipment, such as, high-voltage high-density along with the miniaturization of equipment have made angry the reliability of these devices is becoming a very important issue. Insulation materials used in electrical equipment for high voltage withstand, power equipment, power equipment due to aging and overloading caused by a weakening of the insulation failure and replacement in accordance with the age due to increased costs because of the reliability of electrical equipment should be secured should. Therefore, improved performance and longevity of insulation material is recognized as an important challenge. In this study, power isolation and degeneration of the unit for use in various parts of the molding epoxy resin to improve the insulation performance of the epoxy resin by varying the added amount of nano-SiO2 nanocomposites made epoxy/SiO2 analysis and breakdown properties of the experiment want to improve the electrical properties through the geometry.

  • PDF

Comparison of Heat Insulation Characteristics of Multi-layer Thermal Screen and Development of Curtain System (다겹보온자재의 보온성 비교 및 커튼개폐장치 개발)

  • Lee, Si-Young;Kim, Hark-Joo;Chun, Hee;Yum, Sung-Hyun;Lee, Hyun-Joo
    • Journal of Bio-Environment Control
    • /
    • v.16 no.2
    • /
    • pp.89-95
    • /
    • 2007
  • This study was accomplished to compare energy saving effects of several heat insulation materials in greenhouse and to develop new automatic opening and closing equipment which is suitable to the most effective heat insulation material. To find out more effective heat insulation material, the magnitude of heat transfer occurred through aluminum screen (ALS), non-woven fabric (NWF), double-layer aluminum screen with chemical cotton sheet (DAL), and multi-layer fabric screen material quilted with non-woven fabric, chemical cotton, poly foam, and polypropylene (MLF) were compared relatively. The results showed that the relative magnitude of heat transfer occurred through MLF was lower than DAL and ALS by 23.3% and 43.0% respectively. MLF screen material was the most effective compared with other heat insulation materials. But because of thickness, there was a need of new mechanism for automatic operation in greenhouse. Accordingly, new screen system using MLF-thick but profitable for keeping warm in greenhouse-was developed. Opening & closing equipment was designed to roll MLF with pipe axis during opening process and pull MLF with string during closing process with electric motors, clutches, drums, and so on. In hot pepper cultivation and energy saving test during winter time, the early stage yield of pepper under MLF screen system was higher than NWF by 27%, and gasoline consumption of MLF screen system was lower than NWF by 46%.

A Case Study of Degradation Characteristics for Rod-Insulator on Catenary System in Electric Railway (전기철도 전차선로 지지애자의 염해지역 열화특성 사례 연구)

  • Jung, Hosung;Park, Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.263-266
    • /
    • 2019
  • In the Airport Railroad, the Yeongjong Bridge has a length of 4,420 m and connects Yeongjong Island with the mainland of Incheon City. The bridge is a two-level structure, consisting of a six-lane road at the upper level and a combination of a road and railroad at the lower level. The environmental conditions for the electric railway come mainly from the salt injury area and a heavy industry zone, and the maintenance cycles are determined differently depending on these conditions. This study analyzed the deterioration characteristics of long rod insulators produced with a movable ceramic bracket and polymer materials in the Yeongjong Bridge section of the Airport Railway operating in the salt injury area according to the material characteristics. Comparison of the corona measurements when the insulators were cleaned at the same time showed that the polymer insulator had a higher insulation performance than the ceramic insulator.

A study on the Development of Low-loss Type Mold Autotransformers (저손실형 몰드 단권변압기 개발)

  • Lee, Jong-Su;Shin, Myung-Ho;Mun, Byung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.92-94
    • /
    • 2003
  • The autotransformer currently used on the electric railway system is made of class A insulation material and uses the paper insulation method. As a power converter supplying power to the trolley wire, the autotransformer is one of critical equipment in the railway system. In the autotransformer, load irregularly changes and overload often occurs. These cause overheating of the autotransformer and facilitate deterioration of the autotransformer resulting in burnout accidents due to insulation breakdown. Also, the current autotransformer has poor insolation and short-circuit strength which often badly affect the service life of the transformer, and needs to improve its quality urgently. To overcome one of existing shortcomings of the mold transformer, manufacturers use epoxy resins that have superior flame retardancy to get rid of fro and explosion possibilities during accidents. Currently, new mold transformers are used in indoor distribution facilities with fire-fighting equipments. Coils molded in epoxy resins do not have their insulation performance compromised by humidity, dust, etc enabling easy inspection and maintenance. Comparing to the oil immersed transformer, the mold transformer does not have any concern about environmental pollutions by oil leak or replacement Therefore, to reduce breakdowns and improve reliability of the autotransformer, it is necessary to develop a new mold autotransformer with low loss suitable for our environment to suppress breakdowns of the autotransformer and improve the reliability. This study is about development of a low-loss mold autotransformer necessitated by reasons mentioned earlier.

  • PDF

Effect Analysis for Inequality of Basic Grounding in Bimodal Tram (바이모달 트램의 기준접지 불균등전위에 따른 영향분석)

  • Lee, Kang-Won;Mok, Jai-Kyun;Jang, Se-Ky
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.78-81
    • /
    • 2011
  • Generally, vehicle is insulated from the earth by rubber tire which is intrinsically the insulation material. The electrical ground of vehicle was floated in the sense of electric potential over the electric power sources. First of all, the floated electrical ground of vehicle should be equipotentially connected with the (-) line of electrical equipment. Bimodal tram has the different kinds of electric system. They must be kept insulated to each other electrically. When there is some unbalanced event or connection between them, it will invoke some errors or breakdown to electrical devices including sensors and actuators. This paper has investigated the floating ground effect of bimodal tram built with composite body and shown the effect according to the unbalanced ground of vehicle and the connection between different electric systems.

  • PDF