• 제목/요약/키워드: Electric field poling

검색결과 51건 처리시간 0.024초

저온소결 (K0.5Na0.5)NbO3 세라믹스의 분극전계에 따른 압전 및 유전특성 (Piezoelectric and Dielectric Properties of Low Temperature Sintering (K0.5Na0.5)NbO3 Ceramics with the Variation of Poling Electric Field)

  • 이일하;류주현;정영호
    • 한국전기전자재료학회논문지
    • /
    • 제21권11호
    • /
    • pp.1000-1004
    • /
    • 2008
  • In this paper, the influences of poling electric field on piezoelectric properties of $0.95(K_{0.5}Na_{0.5})NbO_3$-$0.05Li(Sb_{0.8}Nb_{0.2})O_3$ (abbreviated as KNN-LSN) ceramics were investigated. The specimens was sintered at sintering temperature of $1050^{\circ}C$. They showed orthorhombic phase structure without secondary phase. Electromechanical coupling factor (kp), dielectric and piezoelectric constant($d_{33}$) increased with poling electric field. However, mechanical quality factor (Qm) decreased. Take into account of poling conditions and piezoelectric properties of KNN-LSN ceramics, the optimum poling condition for KNN-LSN ceramics was poling electric field of 4.5 kV/mm. At the time, kp of 0.458, Qm of 43.97, $d_{33}$ of 278 pC/N, and dielectric constant of 1079 were shown, respectively.

Poling Quality Enhancement of PPLN Devices Using Negative Multiple Pulse Poling Method

  • Choi, Ju-Won;Ro, Jung-Hoon;Ko, Do-Kyeong;Yu, Nan-Ei
    • Journal of the Optical Society of Korea
    • /
    • 제15권2호
    • /
    • pp.182-186
    • /
    • 2011
  • A poling method using multiple negative voltage was introduced to fabricate periodically poled lithium niobate (PPLN) devices with quasi-phase matching (QPM) period of $12.9\;{\mu}m$ by utilizing an real-time visualization system. We also performed variation of the electric field during the poling. Two different conventionally used poling method, negative and positive single pulses, were used and the poling quality compared through microscopic images and far-field diffraction pattern analysis. Etched images on the +z and -z surfaces of PPLN showed that negative multiple pulse poling presented the highest periodicity in domain structures among the three methods. Duty ratio and its standard deviation were measured by analyzing far-field diffraction patterns. The newly introduced method of negative multiple pulse poling had duty ratio of 0.42 which was close to the ideal value of 0.50 and standard deviation of 0.020 that was about 3 times smaller than that of the other conventional methods.

Effective Periodic Poling in Optical Fibers

  • Kim, Jong-Bae;Ju, Jung-Jin;Kim, Min-Su;Seo, Hong-Seok
    • ETRI Journal
    • /
    • 제26권3호
    • /
    • pp.277-280
    • /
    • 2004
  • The distributions of electric field and induced second-order nonlinearity are analyzed in the periodic poling of optical fibers. A quasi-phase matching efficiency for the induced nonlinearity is calculated in terms of both the electrode separation distance between the applied voltage and generalized electrode width for the periodic poling. Our analysis of the quasi-phase matching efficiency implies that the conversion efficiency can be enhanced through adjusting the separation distance, and the electrode width can be maximized if the electrode width is optimized.

  • PDF

공기 매질에 의한 압전 세라믹스의 분극효과 (Poling Effect on Piezoeletric Ceramics for Air Medium)

  • 김용혁
    • 한국전기전자재료학회논문지
    • /
    • 제23권6호
    • /
    • pp.464-470
    • /
    • 2010
  • A new method for the poling of piezoelectric ceramics with an air insulation medium in stead of silicon oil is described. A similar variation of electromechanical coupling coefficient $K_t$, for an air medium is observed in comparison to that of the material poled by the conventional poling method using a silicon oil medium. Different poling parameters such as dielectric constant $\varepsilon^T$ and frequency deviation ${\Delta}f$ are studied as well as the influence on the aging effect. The required poling factors to achieve the optimal piezoelectric characteristics are electric field, 2 kV/mm, temperature $100^{\circ}C$, and poling time 30 Min. From this result electric field 3 kV/mm atmosphere airs there being will be able to use with the polarization insulation medium about the piezoelectric material, confirmed.

Poling 강도 변화에 따르는 PZT 세라믹스의 강도와 균열성장 의존성 (Dependence of Strength and Crack Growth of PZT Ceramics on Poling Strength)

  • 이홍림;권종오;한봉석
    • 한국세라믹학회지
    • /
    • 제34권8호
    • /
    • pp.877-885
    • /
    • 1997
  • The dependence of strength, crack growth, fracture mode and degree of domain rearrangement of PZT ceramics on poling strength were studied. The PZT [(Pb0.94Sr0.06)(Zr0.46Ti0.54)O3+Nb(trace)] specimens were poled at 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 kv/mm, and the strength of the specimens was measured by 3 point flexure system. The bending strength of the specimen decreased in different modes according to the bending directions; xz, zx and yz plane direction with x axis of the poling direction in Cartesian coordinate system. The strength differences between the directions increased as the poling strength increased. The fracture mode transferred to intergranular fracture mode from transgranular one as the poling strength increased. The mechanical breakdown occurred when the poling strength higher than 3 kV/mm was applied to the specimen. It was observed that the crack length increased in the normal direction to the poling direction, however, decreased in the parallel direction to the poling direction when the poled PZT specimen was indented by the Vickers indenter. However, the crack produced by indentation continuously was continuously increased little by little after indentation on the specimen. The domain rearrangement occurred as the poling strength increased and the domains were rearranged more effectively when the electric field was continuously increased little by little.

  • PDF

Domain Wall Motions in a Near-Morphotropic PZT during a Stepwise Poling Observed by Piezoresponse Force Microscopy

  • Kim, Kwanlae
    • 한국재료학회지
    • /
    • 제27권9호
    • /
    • pp.484-488
    • /
    • 2017
  • In the present study, domain evolution processes of a near-morphotropic PZT ceramic during poling was studied using vertical piezoresponse force microscopy (PFM). To perform macroscopic poling in bulk polycrystalline PZT, poling was carried out in a stepwise fashion, and PFM scan was performed after unloading the electric field. To identify the crystallographic orientation and planes for the observed non-$180^{\circ}$ domain walls in the PFM images, compatibility theory and electron backscatter diffraction (EBSD) were used in conjunction with PFM. Accurate registration between PFM and the EBSD image quality map was carried out by mapping several grains on the sample surface. A herringbone-like domain pattern consisting of two sets of lamellae was observed; this structure evolved into a single set of lamellae during the stepwise poling process. The mechanism underlying the observed domain evolution process was interpreted as showing that the growth of lamellae is determined by the potential energy associated with polarization and an externally applied electric field.

압전 세라믹 PZT에 첨가된 $MnO_2$가 분극조건에 미치는 영향 (Study on the Poling Conditions of PZT Ceramics with $MnO_2$ additive)

  • 최헌일;이장희;사공건
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 1991
  • In this paper, we have investigated the poling conditons depending upon the electric field and temperature for PZT ceramics with various stoichiometry prepared by wet direct method, and $MnO_2$ dopant. The electric field required for saturation polarization was plotted against temperature $(1,000/T^{\circ}K)$ so that the required field could be estimated at any given temperature by measuring the charge displaced during poling. From this curve it should be possible to predict the field required to produce maximum domain switching at temperature below the Curie temperature, when $MnO_2$ dopant was added to the PZT ceramics, the electric field required for saturation polarization was lowered than that of undoped PZT samples.

  • PDF

스프레이 코팅법으로 제조된 CNT/PVDF 압전 복합막의 자기분극 메커니즘 (Self-poling Mechanism of CNT/PVDF Piezoelectric Composite Films Prepared by Spray Coating Method)

  • 이선우
    • 한국전기전자재료학회논문지
    • /
    • 제26권7호
    • /
    • pp.550-554
    • /
    • 2013
  • Carbon nanotubes (CNT) / polyvinylidene fluoride (PVDF) piezoelectric composite films for nanogenerator devices were fabricated by spray coating method. When the CNT/PVDF mixture solution passes through the spray nozzle with small diameter by the compressed nitrogen gas, electric charges are generated in the liquid by a triboelectric effect. Then randomly distributed ${\beta}$ phase PVDF film could be re-oriented by the electric field resulting from the accumulated electrical charges, and might be resulted in extremely one-directionally aligned ${\beta}$ phase PVDF film without additional electric field for poling. X-ray diffraction patterns were used to investigate crystal structure of the CNT/PVDF composite films. It was confirmed that they revealed extremely large portion of the ${\beta}$ phase PVDF crystalline in the film. Therefore we could obtain the poled CNT/PVDF piezoelectric composite films by the spray coating method without additional poling process.

Poling Field Effect on Absorption and Luminescence of Disperse Red-19 and TiO2 Composites

  • Kim, Byoung-Ju;Hwang, Un-Jei;Jo, Dong-Hyun;Lim, Sae-Han;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • 제3권1호
    • /
    • pp.5-9
    • /
    • 2015
  • Absorption and luminescence characteristics of disperse red-19 (DR-19) and $TiO_2$ composite have been investigated with various poling electric field strengths. Two step synthetic processes were employed to employ the DR-19 to the $TiO_2$ sol-gel. Firstly, urethane bond formation between DR-19 (-OH) and 3-isocyanatopropyl triethoxysilane (ICPTES, -N=C=O) performed (ICPDR) prior incorporation to the $TiO_2$ sol-gel. Secondary, the hydrolysis of the ethoxy group from the ICPTES and condensation reaction between silanol groups from ICPTES and $TiO_2$ sol-gel were performed. The ICPDR and $TiO_2$ sol-gel ($DRTiO_2$) were mixed and stirred for several days. The composite was coated to the ITO coated glass substrate. Corona poling were performed before drying the composite with various electric field strengths. The absorption intensity decreased with the increase of the poling field strength, which resulted in the increase of poling efficiency. The photoluminescence also decreased as the poling field strength increased. There is long luminescence tail for the poled $DRTiO_2$ film compared with unpoled $DRTiO_2$ film. The luminescence long tail indicates that the self-trapped excitons and polarons were generated when the $DRTiO_2$ film was poled with electric field.

Electrical Properties and Self-poling Mechanism of CNT/PVDF Piezoelectric Composite Films Prepared by Spray Coating Method

  • Lee, Sunwoo;Jung, Nak-Chun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.256-256
    • /
    • 2013
  • Carbon nanotubes (CNT) / polyvinylidene fluoride (PVDF) piezoelectric composite films for nanogenerator devices were fabricated by spray coating method. When the CNT/PVDF mixture solution passes through the spray nozzle with small diameter by the compressed nitrogen gas, electric charges are generated in the liquid by a triboelectric effect. Then randomly distributed ${\beta}$ phase PVDF film could be re-oriented by the electric field resulting from the accumulated electrical charges, and might be resulted in extremely one-directionally aligned ${\beta}$ phase PVDF film without additional electric field for poling. X-ray diffraction patterns were used to investigate crystal structure of the CNT/PVDF composite films. It was confirmed that they revealed extremely large portion of the ${\beta}$ phase PVDF crystalline in the film. Therefore we could obtain the poled CNT/PVDF piezoelectric composite films by the spray coating method without additional poling process. Charge accumulation and resulting electric field generation mechanism by spray coating method were shown in Fig. 1. The capacitance of the CNT/PVDF films increased by adding CNTs into the PVDF matrix, and finally saturated. However, the I-V curves didn't show any saturation effect in the CNT concentration range of 0~4 wt%. Therefore we can control the performance of the devices fabricated from the CNT/PVDF composite film by adjusting the current level resulted from the CNT concentration with the uniform capacitance value.

  • PDF