• Title/Summary/Keyword: Electric field measuring device

Search Result 30, Processing Time 0.026 seconds

Measurement of III-V Compound Semiconductor Characteristics using the Contactless Electroreflectance Method

  • Yu, Jae-In;Choi, Soon-Don;Chang, Ho-Gyeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.535-538
    • /
    • 2011
  • The electromodulation methods of photoreflectanceand the related technique of contactless electroreflectance(CER) are valuable tools in the evaluation of important device parameters for structures such as heterojunction bipolar transistors, pseudomorphic high electron mobility transistors, and quantum dots(QDs). CER is a very general principle of experimental physics. Instead of measuring the optical reflectance of the material, the derivative with respect to a modulating electric field is evaluated. This procedure generates sharp, differential-like spectra in the region of interband (intersubband) transitions. We conduct electric-optical studies of both GaAs layers and InAs selfassembled QDs grown by molecular beam epitaxy. Strong GaAsbandgap energy is measured in both structures. In the case of lnAs monolayers in GaAs matrices, the strong GaAsbandgap energy is caused by the lateral quantum confinement.

A Study on the Technical Regulation of Weak Electric Filed Strength Radio Equipment about 8.2Hz Frequency Band (8.2MHz 대역 미약 전계강도 무선기기의 출력기준에 관한 연구)

  • Kim, Sun-Youb;Ra, Yoo-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2498-2504
    • /
    • 2009
  • This paper compared the output limit value of the Korean weak electric field strength wireless device in the 8.2MHz band with the standard values of foreign countries. Through this, the study confirmed that the Korean regulation was lower by about 10-20dB than those of the USA or Europe. In order to prove this, the study measured outputs by entrusting the 8.2MHz EAS system to two measuring companies. As a result of these measurements, electric field strengths were shown to be $70.6dB{\mu}V/m$ and $68.3dB{\mu}V/m$ respectively, and these values were confirmed to exceed the current Korean standard of $59.8dB{\mu}V/m$. Accordingly, it is deemed necessary to review the specifications of the Korean standard in the 8.2MHz band.

A Study on the Technical Regulation of Weak Electric Filed Strength Radio Equipment about 58kHz Frequency Band (58kHz 대역 미약 전계강도 무선기기 기술 기준에 관한 연구)

  • Park, Hyoung-Keun;Kim, Sun-Youb;Ra, Yoo-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2319-2325
    • /
    • 2009
  • This paper compared the output limits value of the Korean weak electric field strength wireless device in the 58kHz band with the standard values of foreign countries. Through this, the study confirmed that the Korean regulation was lower by about 50dB than those of the USA or Europe. In order to prove this, the study measured outputs by entrusting the 58kHz EAS system to two measuring companies. As a result of these measurements, electric field strengths were shown to be $112dB{\mu}V/m$ and $08dB{\mu}V/m$ respectively, and these values were confirmed to exceed the current Korean standard of $102.7dB{\mu}V/m$. Accordingly, it is deemed necessary to review the specifications of the Korean standard in the 58kHz band.

Effective Volume of the Korea Research Institute of Standards and Science Free Air Chamber L1 for Low-Energy X-Ray Measurement

  • Chul-Young Yi;Yun Ho Kim;Don Yeong Jeong
    • Progress in Medical Physics
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Purpose: To evaluate the effective volume of the Korea Research Institute of Standards and Science free air chamber (KRISS FAC) L1 used for the primary standard device of the low-energy X-ray air kerma. Methods: The mechanical dimensions were measured using a 3-dimensional coordinate measuring machine (3-d CMM, Model UMM 500, Carl Zeiss). The diameter of the diaphragm was measured by a ring gauge calibrator (Model KRISS-DM1, KRISS). The elongation of the collector length due to electric field distortion was determined from the capacitance measurement of the KRISS FAC considering the result of the finite element method (FEM) analysis using the code QuickField v6.4. Results: The measured length of the collector was 15.8003±0.0014 mm with a 68% confidence level (k=1). The aperture diameter of the diaphragm was 10.0021±0.0002 mm (k=1). The mechanical measurement volume of the KRISS FAC L1 was 1.2415±0.0006 cm3 (k=1). The elongated length of the collector due to the electric field distortion was 0.170±0.021 mm. Considering the elongated length, the effective measurement volume of the KRISS FAC L1 was 1.2548±0.0019 cm3(k=1). Conclusions: The effective volume of the KRISS FAC L1 was determined from the mechanically measured value by adding the elongated volume due to the electric field distortion in the FAC. The effective volume will replace the existing mechanically determined volume in establishing and maintaining the primary standard of the low-energy X-ray.

A Study on the Protection and Measuring Algorithm of IED in Load Condition (부하상태를 고려한 IED 보호 및 계측 알고리즘에 관한 연구)

  • Lee, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.527-532
    • /
    • 2012
  • Recently, in power system, even though the needs of protective IED(Intelligent Electronic Device) is highly increased, there are some problems in the field when use the IED. When the IED is in the fluctuated overload condition, because of the existing algorithm calculate the trip time only with the measured current of just previous measuring stage, the calculated trip time is not a proper value for the overload protection at this kind of condition, and when the load current fluctuate between overload and normal condition, because of the instantaneous reset characteristic of existing algorithm the IED dose not trip. And the non linear loads using power electronic elements seem to be increased. These non linear loads require a counterplan about various harmonics incoming to electric power systems. So we will give solutions about these problems.

Device characteristics of 2.5kV Gate Commutated Thyristor (2-5kV급 Gate Commutated Thyristor 소자의 제작 특성)

  • Kim, Sang-Cheol;Kim, Hyung-Woo;Seo, Kil-Soo;Kim, Nam-Kyun;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.280-283
    • /
    • 2004
  • This paper discribes the design concept, fabrication process and measuring result of 2.5kV Gate Commutated Thyristor devices. Integrated gate commutated thyristors(IGCTs) is the new power semiconductor device used for high power inverter, converter, static var compensator(SVC) etc. Most of the ordinary GTOs(gate turn-off thyristors) are designed as non-punch-through(NPT) concept; i.e. the electric field is reduced to zero within the N-base region. In this paper, we propose transparent anode structure for fast turn-off characteristics. And also, to reach high breakdown voltage, we used 2-stage bevel structure. Bevel angle is very important for high power devices, such as thyristor structure devices. For cathode topology, we designed 430 cathode fingers. Each finger has designed $200{\mu}m$ width and $2600{\mu}m$ length. The breakdown voltage between cathode and anode contact of this fabricated GCT device is 2,715V.

  • PDF

Study on the Magnetic Shield Effect of Carbon-based Materials at Extremely Low Frequency (탄소계 소재를 이용한 극저주파 영역에서의 자기 차폐효과 연구)

  • Oh, Seong Moon;Kang, Dong Su;Lee, Sang Min;Baek, Un Gyeong;Roh, Jae Seung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • To examine the magnetic shielding effect for carbon-based materials at extremely low frequencies (60 Hz), two types of carbon black (Super-P and Denka Black) and a natural graphite (HC-198) were mixed into organic binder at 10 wt.% to produce a coating solution, and a powder coating with varying thickness was applied on an aluminum disk measuring 88 mm in radius. A device was developed to measure the sheielding effect at extremely low frequencies. A closed circuit was achieved by connecting a transformer and a resistor. The applied voltage was fixed at 65 V, and the magnetic field was measured to being the range of 4.95~5.10 mG. Depending on the thickness of the coating layer, the magnetic field showed a decreasing trend. The maximum decrease in the magnetic field of 38.3% was measured when natural graphite was coated with specimens averaging $455{\mu}m$. This study confirmed that carbon-based materials enable magnetic shielding at extremely low frequencies, and that the magnetic shielding effect can be enhanced by varying the coating thickness.

Comparison of Magnetocardiogram Parameters Between a Ischemic Heart Disease Group and Control Group (정상군 및 허혈성 심질환 환자군에서의 심자도 파라미터 비교)

  • Park, Jong-Duk;Huh, Young;Jin, Seung-oh;Jeon, Sung-chae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.11
    • /
    • pp.680-688
    • /
    • 2005
  • The electrical current generated by heart creates not only electric potential but also a magnetic field. We have observed electrophysiological phenomena of the heart by measuring components of magnetocardiogram(MCG) using 61 channel superconducting quantum interference device(SQUD) system. We have analyzed the possibility and characteristics of MCG parameters for diagnosis of ischemic heart disease. A technique for automatic analysis of MCG signals in time domain was developed. The methods for detecting the position, the interval, the amplitude ratio, and the direction of single current dipole were examined in the MCG wave. The position and interval parameters were obtained by calculating the gradients of a envelope curve which could be formed by the difference between the maximum and minimum envelope of multi-channel MCG signals. We show some differences of the frequency contour map between the normal MCG and the abnormal (ischemic heart disease) MCG. The direction of single current dipole can be defined by rotating the magnetic field according to Biot-Savart's law at each point of MCG signals. In this study, we have examined the direction of single current dipole from searching for the centroids of positive and negative magnetic fields. The amplitude ratio parameters for measuring 57 deviation consisted of A$_{T}$/A$_{R}$ and other ratios. and We developed a new analysis method, which is based on the frequency contour map of electromagnetic field. Using theses parameters, we founded significant differences between normal subjects and ischemic patients in some parameters.

DC Traction Regenerative Energy Storage Devices using Super-capacitor (슈퍼 커패시터를 이용한 직류철도 회생에너지 저장장치)

  • Kim, Jong-Yoon;Jung, Doo-Yong;Jang, Su-Jin;Lee, Byoung-Kuk;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.247-256
    • /
    • 2008
  • Regenerative energy generated by regenerative braking of DC traction can cause the system malfunction or damage to the rectifier, or malfunction of the power conversion device in power supply system by DC Line voltage rise in feeder line. Regenerative energy storage system using super capacitor is one of the ways to stabilize DC line voltage. In this paper, energy storage system of DC traction system using super-capacitor bank is implemented and using the field measurement data of the station N and the station S on the Line 2, the operation characteristics of line voltage caused by regenerative energy of electric trains are verified. Also, charge/discharge characteristics of super capacitor are verified as well. Thus, we can verify the operation characteristics of super-capacitor bank for regenerative energy storage system installed in DC Traction. And if we can use field measurement data of DC line voltage, we have obtained cost reduction. The stabilization of the system will be improved by measuring the operation characteristics of regenerative energy storage system in certain section operated by DC traction and predicting the capacity and lifetime of super-capacitor.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.