• Title/Summary/Keyword: Electric field calculation

Search Result 192, Processing Time 0.023 seconds

Prediction of Hot Gas Behavior in High Voltage Self-blast Circuit Breaker (초고압 복합소호 차단부의 열가스 거동 예측)

  • Kim, Jin-Bum;Yeo, Chang-Ho;Seo, Kyoung-Bo;Kweon, Ki-Yeoung;Lee, Hahk-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2494-2499
    • /
    • 2007
  • Self-blast circuit breakers utilize the energy dissipated by the arc itself to create the required conditions for arc quenching during the current zero. The high-current simulation provides information about the mixing process of the hot PTFE cloud with $SF_6$ gas which is difficult to access for measurement. But it is also hard to simulate flow phenomenon because the flow in interrupter with high current, $SF_6$-PTFE mixture vapor and complex physical behavior including radiation, calculation of electric field. Using a commercial computational fluid dynamics(CFD) package, the conservation equation for the gas and temperature, velocity and electric fields within breaker can be solved. Results show good agreement between the predicted and measured pressure rise in the thermal chamber.

  • PDF

Calculation of electric field gradient tensor for simple point charge distributions and its application to real systems

  • Choh, Sung-Ho;Shin, Hee-Won;Park, II-Woo;Ju, Heong-Kyu;Kim, Jong-Hyun;Kim, Hae-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.7 no.1
    • /
    • pp.16-24
    • /
    • 2003
  • Nuclei with the spin quantum number not smaller than unity have not only the nuclear magnetic moment but also the electric quadrupole moment. The quadrupole moment couples with the electric field gradient (EFG) to produce the nuclear quadrupole interaction. It is well known that two independent parameters, i.e. the quadrupole coupling constant (QCC) and the asymmetry parameter ($\eta$) together with the principal axis directions can fully describe the interaction and are very sensitive to the local symmetry and structure of the solid. In order to obtain quantitative estimates of the EFG tensor for various simple ionic configurations surrounding the nucleus under consideration, we employ the simple point charge approximation and apply the calculated results to some real crystals. General agreement is rather satisfactory.

  • PDF

Turbulent Particle Dispersion Effects on Electrostatic Precipitation (전기집진에서의 난류 입자 이산)

  • Choe, Beom-Seok;Fletcher C.A.J
    • 연구논문집
    • /
    • s.28
    • /
    • pp.39-47
    • /
    • 1998
  • Industrial electrostatic precipitation is a very complex process, which involves multiple-way interaction between the electric field, the fluid flow, and the particulate motion. This paper describes a strongly coupled calculation procedure for the rigorous computation of particle dynamics during electrostatic precipitation. The turbulent gas flow and the particle motion under electrostatic forces are calculated by using the commercial computational fluid dynamics (CFD) package FLUENT linked to a finite-volume solver for the electric field and ion charge. Particle charge is determined from both local electrical conditions and the cell residence time which the particle has experienced through its path. Particle charge density and the particle velocity are averaged in a control volume to use Lagrangian information of the particle motion in calculating the gas and electric fields. The turbulent particulate transport and the effects of particulate space charge on the electrical current flow are investigated. The calculated results for poly-dispersed particles are compared with those for mono-dispersed particles, and significant differences are demonstrated.

  • PDF

AC Losses of the HTS Pancake Coil by Using Electric Method (전기적 측정법을 사용한 팬케이크 코일에서의 교류손실 측정)

  • 이승욱;임형우;최명섭;이희준;차귀수;이지광
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.37-40
    • /
    • 2003
  • This paper presents calculated and measured AC losses of the HTS pancake coil. Magnetic field in the HTS coil under operating conditions was calculated by FEM. Results of measured ac loss in 4-stacked short sample were used in the AC loss calculation. Various methods, such as, electric method, calorimetric method, wattmeter method, were used to measure the AC loss.

  • PDF

Characteristics calculation on radio frequency power transfer in a planar inductively coupled plasma source (평면형 유도결합 플라즈마 장치에서의 RF 전력 전달 특성 계산)

  • 이정순;정태훈
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.368-375
    • /
    • 1999
  • The Maxwell equation and the transformer equivalent-circuit model are applied to a radio frequency planar inductively coupled plasma. The spatial distribution of the vector potential, the magnetic field, and the electric field are obtained analytically. As a result, the plasma current, the mutual inductance between the coil and the plasma, and the self inductance of plasma are found to increase with increasing skin depth. The spatial distribution of absorbed power has maximum where the antenna coil exists, and has a similar profile to that of the induced electric field. The power transfer efficiency is found to increase with increasing gas pressure before a saturation around p+ 20mTorr, while it shows an increase with the plasma density before a slight decrease around a density of $5\times10^{11}/\textrm{cm}^3$.

  • PDF

Calculation of Power Frequency Electromagnetic Field Around the Kyeongbu High Speed Railways (경부고속철도 주변의 60 Hz 전자계 분포 예측에 관한 연구경부고속철도)

  • Kim, E.S.;Myung, S.H.;Lee, B.Y.;Han, I.S.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1648-1650
    • /
    • 1997
  • The effects of power frequency electric and magnetic fields have been a source of concern for many years. Electromagnetic fields can pose a theat to both signal system of electrified railways and human body around railways. It is believed that, though the electromagnetic fields do no serious harm to human health, they do induce biological effects. This paper estimates the electromagnetic fields near Kyeongbu high speed railways with numerical data. The charge simulation method and surface charge method are used to calculate the electric field of 2 dimensional power distribution lines and rails and magnetic field is calculated on the base of Biot-Sarart's law.

  • PDF

Calculation of Electric Field and Magnetic Flux Density under 3-Phase Power Lines (3상 전력선로하의 전계 및 자속밀도 계산)

  • Lee, Y.S.;Park, J.E.;Noh, I.S.;Kang, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.439-441
    • /
    • 2003
  • In this study the formula of electro magnetic fields under 3-phase power lines with vertical or horizontal line-configurations were deduced and the effect of the earth was considered in the formula. Using the formula the electric field and the magnetic flux density under distribution and transmission lines constucted currently in our country were calculated and the components of each field were investigated with horizontal distance from tower and height above the earth.

  • PDF

Dielectric Recovery Characteristics between Poles of 800kV Model Interrupter -I. Effects or separation between Moving Main Contact and Moving Arcing Contact- (800kV 모델차단부의 극간 절연회복특성 -I. 가동주접점과 가동아크접점간 이격거리의 변화에 대한 영향분석-)

  • Shin, Y.J.;Park, K.Y.;Chang, K.C.;Song, K.D.;Jeong, J.K.;Song, W.P.;Kang, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.270-273
    • /
    • 1994
  • The capacitive current breaking capability as well as the short circuit current breaking capability is a very important factor in the performance of a circuit breaker. The dielectric recovery capability between poles should be considered in the desist of a circuit breaker because approximately two times of the maximum power system voltage might be applied between poles after the capacitive current be interrupted. The electric field and flow field analyses were utilized in the calculation of dielectric recovery characteristics between poles of 800kV model interrupter. The results show that the separation between moving main contact and moving arcing contact will affect to decrease significantly the electric field strength of a moving arcing contact and an insulation cover, to increase slightly the electric field strength of a fixed arcing contact and to decrease consequently the dielectric recovery capability between poles of the interrupter.

  • PDF

Induced Current Calculation in a Human Body Model due to Magnetic field in High Speed Railway (고속철도내 자기장에 의한 인체 모델에서의 유도 전류 계산)

  • Han, In-Su;Lee, Tae-Hyung;Park, Choon-Soo;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.208-213
    • /
    • 2008
  • In recent society, the quality of human life has improved due to the use of electric appliances and the high powered electrical equipments. However, lots of electric appliances and equipments generate the electromagnetic field hazard. Many studies have been made about the wrong behavior of machines due to electromagnetic fields, the interferences in communication equipments, the possibility of the electromagnetic field hazard in human body, etc. There exist international standards about the RF equipments (ex. mobile phone, antenna, etc.). But, many researchers involved in power frequency electric and magnetic field only propose the prudential avoidance. In this paper, induced currents in a human body model due to magnetic fields in high speed railway are calculated by two dimensional impedance method. Power frequency(60Hz) magnetic fields are calculated and induced currents are simulated by Faraday's law. Induced currents are simulated with induced voltage, human body model impedances due to Ohm's law, magnetic fields derived from Biot-Savart's law and Transmission Line Method in high speed railway.

  • PDF

A Study on the Instantaneous Characteristics Analysis Method of PMSM using Slot Equivalent Circuit (슬롯등가회로를 이용한 영구자석모터의 순시치 해석법연구)

  • Won, Sung Hong;Han, Ki-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Recently, many motor analysis methods have been developed and studied. Among these methods, the finite element method(FEM) and the analytic method are most popular in field engineers because of the accuracy of FEM and the convenience and rapid analysis time of the analytic method. Contrary, the finite element method has a weakness in calculation time and it is not easy to obtain the instantaneous characteristics value of motor with the analytic method. In this paper, the authors proposes a novel method for calculating the instantaneous characteristics of motors with the magnetic slot equivalent circuit.