• Title/Summary/Keyword: Electric contact

Search Result 701, Processing Time 0.028 seconds

Reconstruction of the Bone Exposed Soft Tissue Defects in Lower Extremities using Artificial dermis(AlloDerm®) (인공 진피(알로덤®)을 이용한 하지의 골이 노출된 연부 조직 결손의 재건)

  • Jeon, Man Kyung;Jang, Young Chul;Koh, Jang Hyu;Seo, Dong Kook;Lee, Jong Wook;Choi, Jai Koo
    • Archives of Plastic Surgery
    • /
    • v.36 no.5
    • /
    • pp.578-582
    • /
    • 2009
  • Purpose: In extensive deep burn of the lower limb, due to less amount of soft tissue, bone is easily exposed. When it happens, natural healing or reconstruction with skin graft only is not easy. Local flap is difficult to success, because adjacent skins are burnt or skin grafted tissues. Muscle flap or free flap are also limited and has high failure rate due to deep tissue damage. The authors acquired good outcome by performing one - stage operation on bone exposed soft tissue defect with AlloDerm$^{(R)}$(LifeCell, USA), an acellular dermal matrix producted from cadaveric skin. Methods: We studied 14 bone exposed soft tissue defect patients from March 2002 to March 2009. Average age, sex, cause of burn, location of wound, duration of admission period, and postoperative complications were studied. We removed bony cortex with burring, until conforming pinpoint bone bleeding. Then rehydrated AlloDerm$^{(R)}$(25 / 1000 inches, meshed type) was applicated on wound, and thin split thickness(6 ~ 8 / 1000 inches) skin graft was done at the immediately same operative time. Results: Average age of patients was 53.6 years(25 years ~ 80 years, SD = 16.8), and 13 patients were male(male : female = 13 : 1). Flame burn was the largest number. (Flame burn 6, electric burn 3, contact burn 4, and scalding burn 1). Tibia(8) was the most affected site. (tibia 8, toe 4, malleolus 1, and metatarsal bone 1). Thin STSC with AlloDerm$^{(R)}$ took without additional surgery in 12 of 14 patients. Partial graft loss was shown on four cases. Two cases were small in size under $1{\times}1cm$, easily healed with simple dressing, and other two cases needed additional surgery. But in case of additional surgery, granulation tissue has easily formed, and simple patch graft on AlloDerm$^{(R)}$ was enough. Average duration of admission period of patients without additional surgery was 15 days(13 ~ 19 days). Conclusion: AlloDerm$^{(R)}$ and thin split thickness skin graft give us an advantage in short surgery time and less limitations in donor site than flap surgery. Postoperative scar is less than in conventional skin graft because of more firm restoration of dermal structure with AlloDerm$^{(R)}$. We propose that AlloDerm$^{(R)}$ and thin split thickness skin graft could be a solution to bone exposured soft tissue defects in extensive deep burned patients on lower extremities, especially when adjacent tissue cannot be used for flap due to extensive burn.

Improvement of Electron Emission Characteristics and Emission Stability from Metal-coated Carbon Nanotubes (금속 코팅된 탄소나노튜브의 전계 방출 특성 및 신뢰성 향상)

  • Uh, H.S.;Park, S.;Kim, B.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.436-441
    • /
    • 2011
  • Metal coating with several nanometer thickness was applied on the carbon nanotubes (CNTs) in order to improve electron emission characteristics and emission reliability for the potential applications in the area of various electron sources and displays. CNTs were grown on the 2-nm thick Invar (52% Fe, 42% Ni, 6% Co alloy)-catalized Si substrate by using plasma-enhanced chemical vapor deposition at $450^{\circ}C$. In order to reduce the spatial density of densely packed CNTs, as-grown CNTs were partly etched back by $N_2$ plasma and subsequently coated with 5~150 nm thick Ti by a sputtering method. 5 nm thick Ti-coated CNTs produced four times higher emission current density at the electric field of 6 V/${\mu}m$ and much lower emission current fluctuation, compared with the as-grown CNTs. These improved emission properties are mainly due to not only the work function of Ti (4.3 eV) lower than that of pristine CNTs (5 eV), but also lower contact resistance and better adhesion between CNT emitters and substrate accomplished by Ti coating.

Characteristics of Nickel_Titanium Dual-Metal Schottky Contacts Formed by Over-Etching of Field Oxide on Ni/4H-SiC Field Plate Schottky Diode and Improvement of Process (Ni/4H-SiC Field Plate Schottky 다이오드 제작 시 과도 식각에 의해 형성된 Nickel_Titanium 이중 금속 Schottky 접합 특성과 공정 개선 연구)

  • Oh, Myeong-Sook;Lee, Jong-Ho;Kim, Dae-Hwan;Moon, Jeong-Hyun;Yim, Jeong-Hyuk;Lee, Do-Hyun;Kim, Hyeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • Silicon carbide (SiC) is a promising material for power device applications due to its wide band gap (3.26 eV for 4H-SiC), high critical electric field and excellent thermal conductivity. The Schottky barrier diode is the representative high-power device that is currently available commercially. A field plate edge-terminated 4H-SiC was fabricated using a lift-off process for opening the Schottky contacts. In this case, Ni/Ti dual-metal contacts were unintentionally formed at the edge of the Schottky contacts and resulted in the degradation of the electrical properties of the diodes. The breakdown voltage and Schottky barrier height (SBH, ${\Phi}_B$) was 107 V and 0.67 eV, respectively. To form homogeneous single-metal Ni/4H-SiC Schottky contacts, a deposition and etching method was employed, and the electrical properties of the diodes were improved. The modified SBDs showed enhanced electrical properties, as witnessed by a breakdown voltage of 635 V, a Schottky barrier height of ${\Phi}_B$=1.48 eV, an ideality factor of n=1.04 (close to one), a forward voltage drop of $V_F$=1.6 V, a specific on resistance of $R_{on}=2.1m{\Omega}-cm^2$ and a power loss of $P_L=79.6Wcm^{-2}$.

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries (리튬이차전지용 고체 전해질의 최근 진전과 전망)

  • Kim, Jumi;Oh, Jimin;Kim, Ju Young;Lee, Young-Gi;Kim, Kwang Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.87-103
    • /
    • 2019
  • Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.

The Power Converter Circuit Characteristics for 3 kW Wireless Power Transmission (3 kW 무선 전력전송을 위한 전력 변환기 회로 특성)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Kim, Jin Sun;Kang, Jin-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.566-572
    • /
    • 2020
  • In a wireless power transmitter, the characteristics and effects of wireless power transmission between two induction coils are investigated, and a power converter circuit and a battery charger/discharger circuit using wireless power transmission technology are proposed. The advantage of wireless power transmitters and wireless chargers is that, instead of the existing plug-in-mounted wired charger (OBC; on-board charger), the user can wirelessly charge the battery without connecting the power source when charging power to the battery. There is. In addition, the advantage of wireless charging can bring about an energy efficiency improvement effect by using the secondary side rectifier circuit and the receiving coil, but the large-capacity long-distance wireless charging method has a limitation on the transmission distance, so many studies are currently being conducted. The purpose of the study is to study the transmitter circuit and receiver circuit of a wireless power transmission device using a primary coil, a secondary coil, and a half bridge series resonance converter, which can transmit power of a non-contact type power transmitter. As a result, a new topology was applied to improve the power transmission distance of the wireless charging system, and through an experiment according to each distance, the maximum efficiency (95.8%) was confirmed at an output of 3 kW at an 8 cm transmission distance.

The Effects of Street Tree's Vertical Structures on Thermal Comfort (열쾌적성에 대한 가로수 수직적 구조의 영향 분석)

  • Lee, Su-Been;Choe, Hye-Yeong;Jo, Hyun-Kil;Yun, Young-Jo;Kil, Sung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.4
    • /
    • pp.15-29
    • /
    • 2021
  • Urban green spaces offer a variety of benefits to living things and humans. However, existing green spaces have been reduced and fragmented due to urbanization, and there is a limit to creating new large green spaces in densely developed cities. Street trees have fewer restrictions on land use, which can be a measure to secure green areas in cities. In Korea, excessive pruning is being done on some street trees for reasons such as blocking of building signboards, contact with electric wires, and restrictions on sidewalk widths. Therefore, it is necessary to quantitatively understand the relationship between the benefits provided by street trees and their structures to come up with an efficient and systematic planning and management plan for urban street trees. In this study, we quantitatively analyzed the relationship between the thermal comfort improvement by the shades of street trees and the vertical structure, planting environment, and types of street trees. To calculate the thermal comfort felt by human body, we calculated UTCI (Universal Thermal Climate Index) of each street tree. For the vertical structure of street trees, we used Terrestrial LiDAR and the point clouds of street tree's crown was sliced vertically at 1m intervals. We conducted a multiple regression analysis on the thermal comfort improvement using the variables we obtained from fields. As a result, in the case of a street tree's vertical structure, the lager the volume of tree's crown located 3-4m (β=0.298, p<.05) and 6-7m (β=0.568, p<.001) above clear length, the better the cooling effect. In addition, the thermal comfort improvement was assessed to decrease as the DBH increased (β=-0.435, p<.001). In general, the crown diameter and DBH are positively correlated, with a cooling effect occurring as crown diameter increases. In this study, the opposite result was obtained due to the small number of trees measured, so additional research is needed by increasing the number of tree samples. In the case of the planting environment, the effect of improving thermal comfort was higher in the shaded area of trees planted to the south (β=-0.541, p<.001). Since unsystematic management of street trees can deteriorate the function of them, quantitative evaluations of the vertical structure of street trees are required, which can provide specific measures for planning and management of urban street trees with thermal comfort effect.

Effect of Compensation for Thickness Reduction by Chemical Degradation of PEMFC Membrane on Performance and Durability (PEMFC 고분자막의 화학적인 열화에 의한 두께 감소 보정이 성능 및 내구성에 미치는 영향)

  • Sohyeong Oh;Yoojin Kim;Seungtae Lee;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • As the demand for hydrogen electric vehicles for commercial vehicles increases, the durability of PEMFCs must increase more than five times that of passenger cars, so research and development to improve durability is urgent. When the PEMFC membrane electrode assembly (MEA) undergoes chemical degradation, the MEA thickness decreases and pinholes occur. In this study, changes in the performance and durability of the MEA were measured while increasing the clamping pressure of the unit cell after open circuit voltage (OCV) holding, an accelerated chemical degradation experiment. As the clamping pressure increased, the resistance of the polymer membrane and the membrane/electrode contact resistance decreased, improving the I-V performance and reducing the hydrogen permeability. As the hydrogen permeability decreased, the OCV increased. When the pinhole area was removed and the MEA clamping pressure was increased, the hydrogen permeability decreased sharply, confirming that the local degradation has a large effect on the performance and durability of the entire cell. When the pinhole was removed and re-clamping and OCV holding was evaluated, it was confirmed that the durability improved according to the decrease in membrane resistance and hydrogen permeability.

Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects (실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합)

  • Cho, Sumin;Joung, Yoonsu;Kim, Hyeonsu;Park, Minseok;Lee, Donghan;Kam, Dongik;Jang, Sunmin;Ra, Yoonsang;Cha, Kyoung Je;Kim, Hyung Woo;Seo, Kyoung Duck;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Recently, the bio-healthcare market is enlarging worldwide due to various reasons such as the COVID-19 pandemic. Among them, biometric measurement and analysis technology are expected to bring about future technological innovation and socio-economic ripple effect. Existing systems require a large-capacity battery to drive signal processing, wireless transmission part, and an operating system in the process. However, due to the limitation of the battery capacity, it causes a spatio-temporal limitation on the use of the device. This limitation can act as a cause for the disconnection of data required for the user's health care monitoring, so it is one of the major obstacles of the health care device. In this study, we report the concept of a standalone healthcare monitoring module, which is based on both triboelectric effects and electromagnetic effects, by converting biomechanical energy into suitable electric energy. The proposed system can be operated independently without an external power source. In particular, the wireless foot pressure measurement monitoring system, which is rationally designed triboelectric sensor (TES), can recognize the user's walking habits through foot pressure measurement. By applying the triboelectric effects to the contact-separation behavior that occurs during walking, an effective foot pressure sensor was made, the performance of the sensor was verified through an electrical output signal according to the pressure, and its dynamic behavior is measured through a signal processing circuit using a capacitor. In addition, the biomechanical energy dissipated during walking is harvested as electrical energy by using the electromagnetic induction effect to be used as a power source for wireless transmission and signal processing. Therefore, the proposed system has a great potential to reduce the inconvenience of charging caused by limited battery capacity and to overcome the problem of data disconnection.

Environmental Leachability of Electric Arc Furnace Dust for Applying as Hazardous Material Treatment (제강분진을 이용한 유해물질 처리기술 적용을 위한 안전성 평가)

  • Lee, Sang-Hoon;Kang, Sung-Ho;Kim, Jee-Hoon;Chang, Yoon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • Iron manufacturing process involves production of various by-product including slag, sludge, sintering and EAF(Electric Arc furnace dust). Some of the by-products such as EAF and sintering dust are disposed of as waste due to their high heavy metal contents. It has been notice for many years that the EAF dust also contain about 65% of Fe(0) and Fe(II) and then the possible utilization of the iron. One possibility is to apply the EAF as a lining material in conjunction with clay or HDPE liners, in waste landfill. The probable reaction between the leachate containing toxic elements such as TCE, PCE dioxine and $Cr^{6+}$ is reduction of the toxic materials in corresponding to the oxidation of the reduced iron and therefore diminishing the toxicity of the leachate. It is, however, prerequisite to evaluate the leaching characteristics of the EAF dust before application. Amelioration of the leachate would be archived only when the level of toxic elements in the treated leachate is less than that of in the untreated leachate. Several leaching techniques were selected to cover different conditions and variable environments including time, pH and contact method. The testing methods include availability test, pH-stat test and continuous column test. Cr and Zn are potentially leachable elements among the trace metals. The pH of the EAF dust is highly alkaline, recording around 12 and Zn is unlikely to be leached under the condition. On the contrary Cr is more leachable under alkaline environment. However, the released Cr should be reduced to $Cr^{3+}$ and then removed as $Cr(OH)_3$. Removal of the Cr is observed in the column test and further study on the specific reaction of Cr and EAF dust is underway.

A Survey on the Workplace Environment and Personal Protective Equipment of Poultry Farmers (양계 농업인의 작업장 환경 및 개인보호구 착용 실태조사)

  • Kim, Insoo;Kim, Kyung-Ran;Lee, Kyung-Suk;Chae, Hye-Seon;Kim, Sungwoo
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.6
    • /
    • pp.454-468
    • /
    • 2014
  • Objectives: This study was conducted to investigate the actual condition of the farm work environment and personal protective equipment as part of the effort to improve livestock work for the safety and health of poultry farmers and provide basic data for establishing plans to improve and develop personal protective equipment. Methods: For this purpose, a questionnaire survey on general information about stables, the poultry work environment, accidents, the wearing of work clothes and personal protective equipment, and the level of awareness related to personal protective equipment was conducted among 148 poultry farmers. Results: As a result, it was found that poultry workplace environment was exposed to such risks as fine dusts; organic dusts; poisonous gases; odorous substances; chicken excrement; contact with chickens, bacteria or viruses; and accidents related to machine operation. Thirteen percent of respondents suffered severe respiratory diseases, and the most frequently injured sites due to accidents were the hands (25.7%), knees (23.8%), arms (17.3%), and head (10.9%). The most frequent type of accident was collisions between the body and obstacles or machinery during movement (36.4%), followed by erroneous machine operation such as feeders and electric shocks (8.5%). Regarding the wearing of work clothes and personal protective equipment, 51.7% of the respondents wore worn-out clothing or everyday clothes, whereas only 32.0% wore work clothes. The percentage of farmers who wore proper protective equipment for the work environment during poultry work was 48.4%. The most frequently used type of protective equipment was boots (38.9%), followed by mask (36.7%), gloves (36.3%), appropriate work clothes (22.6%), quarantine clothes (17.6%), helmets (13.4%), and goggles (12.6%). The rate of wearing goggles was low because they were considered inconvenient and lowered work efficiency. Furthermore, they purchased everyday products available on the market for their personal protective equipment which were not appropriate for maintaining safety in an actual harmful environment and its consequent risks. As a result of the survey of the awareness level related to personal protective equipment, their levels of awareness of accidents and attitude proved to be average or higher, but the practice of wearing protective equipment and the level of knowledge and management of personal protective equipment were lower. Conclusion: This survey found that the wearing status of personal protective equipment among poultry farmers was insufficient even though they were exposed to risks. Most respondents were aware of the necessity of wearing personal protective equipment and of the potential for accidents, but they did not wear proper protective equipment. Their wearing rate was low due to a lack of knowledge about protective equipment, as well as the inconvenience of wearing it. Therefore there is a need to improve and develop specialized personal protective equipment for respiration, hands, and eyes, as well as work clothes that can protect farmers from major harmful matter that is generated in the poultry workplace. Based on the results of this investigation, we will conduct further studies on the required performance and design directions of personal protective equipment while collecting more objective data through field-oriented assessments.