• Title/Summary/Keyword: Electric charges

Search Result 190, Processing Time 0.023 seconds

Soft Plasma Flash X-ray Generator Utilizing a Vacuum Discharge Capillary

  • Sato, Eiichi;Hayasi, Yasuomi;Usuki, Tatsumi;Sato, Koetsu;Takayama, Kazuyoshi;Ido, Hideaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.400-403
    • /
    • 2002
  • The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments were primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -10.8 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 ${\mu}$m aluminum filter were less than 30 ${\mu}$s, and we detected the aluminum characteristic x-ray intensity using a 6.8 ${\mu}$m aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted and diffused greatly after passing through two slits.

  • PDF

Middle school students' interpretation, construction, and application of visual representations for magnetic field due to a current (전류에 의한 자기장에 대한 중학생의 시각적 표상 해석, 구성, 적용 능력)

  • Jo, Kwanghee;Jho, Hunkoog;Yoon, Hye-Gyoung
    • Journal of Science Education
    • /
    • v.41 no.1
    • /
    • pp.152-165
    • /
    • 2017
  • The magnetic field due to a current is one of the core concepts in electromagnetism which has been taught in secondary science education. In addition, it is a representative example of using visual representations to explain the relation between invisible physical quantities; current and magnetic field. In this study we investigated middle school students' representational competence into three components; interpretation, construction, and application of visual representations. According to the analysis, more than 75 % of the respondents interpreted the meaning of the arrows for current and magnetic field correctly. However, half of them confused the movement of electric charges with the direction of magnetic field. Over 60 % of the students constructed the magnetic field representation as circular closed curves, but many of them could not express the density of field lines properly. In application of visual representations, more than half failed to draw the direction of compass needle correctly. The scores were in order of interpretation, construction and application. There were also significant correlations among three components of representational competence. More attention and research on students' representational competence and effective use of visual representations is needed to better support science learning and teaching.

Design and Fabrication of HgI2 Sensor for Phosphor Screen based flat panel X-ray Detector (형광체 스크린 기반 평판형 X선 검출기 적용을 위한 요오드화수은 필름 광도전체 센서 설계 및 제작)

  • Park, Ji Koon;Jung, Bong Jae;Choi, Il Hong;Noh, Si Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.189-194
    • /
    • 2014
  • In this study, from a new x-ray detector that combines a columnar CsI:Na scintillation layer with a photosensitive mercuric iodide layer was investigated. In this structure, X-rays are converted into visible light on a thick CsI:Na layer, which is then converted to electric charges in a thin $HgI_2$ bottom layer. The thin coplanar mercuric iodide films as a photosensitive converter requiring only a few tens of volts of bias, associated with a thick columnar coating of phosphor layer, were simulated and designed. The results of this research suggest that the new coplanar x-ray detector with a hybrid-type structure can resolve the following problems: high voltage from the a-Se, and low conversion efficiency from the indirect conversion method. The results of this research suggest that the new CsI:Na/$HgI_2$ x-ray detector with a double-layer type structure can resolve the following problems: high voltage from the direct conversion method, and low conversion efficiency from the indirect conversion method.

The Study on Automatic Temperature Transmission System for the Heating pipe at Home (가정식난방배수관내의자동온도송신장치에대한연구)

  • Park, Chul-Min;Jo, Heung-Kuk;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2641-2646
    • /
    • 2009
  • The more growing on home automation system at automatic control, the more efficiency required for energy consumption and for recycling energy in near future. Heating is essential in general apartment. Heating method is two types in apartment. One uses electricity, and other one uses warm water. If use electricity, is not efficient by rise of electric charges. But, It can reduce much in expense aspect, if use warm water. When use warm water, temperature of warm water is not equal from all pipe parts. Therefore, indoor tempera can be unequal with set point. Solution of these problems is as following. Temperature sensor in warm water attach pipe. The measured temperature transmits by real time. Temperature of warm water controls in receiver side. In this paper, we propose an automatic temperature transmission system for the heating pipe at home, that is a low-power based, and supply the energy source from a small AC motor resided in bottom cement mortal. The proposed system is used in power mechanism from a collision process of water-jet using propeller water-difference and also designed a CPU module by Atmega8 at ATMEL co., Inc. and a communication module by CC1020 at Chipcon co., Inc.

Experimental Study on Electrokinetic Streaming Potential in Micropore Channels of Hollw-Fiber Based on General Helmholtz-Smoluchowski's Principle (일반적 Helmholtz-Smoluchowski 원리에 따른 중공사 미세기공 채널에서의 계면동전기 흐름전위에 관한 실험연구)

  • 전명석;조홍일
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.41-50
    • /
    • 2002
  • The streaming potential generated by the electrokinetic flow within electric double layer of charged microchannel is applied to determine the zeta potential of hollow-fiber membrane pore by using the general Helmholtz-Smoluchowski equation. The streaming potential is know to provide a useful real-time information on the surface property and the interaction between pore and particles in actual situations and physicochemical conditions. The influence of physicochemical parameters upon the filtration with hollow-fibers has been examined with an in-situ and simultaneously monitoring the streaming potential as well as permeate flux. In particular, the present study examined an experimental method to identify the effect of cake layer which can vary according to the axial position of a hollow-fiber and the progress of membrane fouling by measuring the position-dependent streaming potential. As the latex concentration increases, the permeate flux decreased but the streaming potential increased. The growth of cake layer has been mire developed with increasing latex concentration, however, the effect of surface charges of latexes deposited on the membrane surface leads to increase the streaming potential. With increasing ionic concentration of KCI, both the permeate flux and the streaming potential decrease. The increase of ionic concentration provides a compact cake layer due to the shrinkage of Debye length and the decreased streaming potential results from the weakened ionic flows owing to a thin diffusive double layer.

Feasibility Analysis on Replacing LED Lighting with Incandescent Bulbs in Public Institution (백열 전구의 LED 조명 교체에 대한 타당성 분석 - 공공기관을 중심으로 -)

  • Park, Youn Mi;Lee, Myung Koon
    • Journal of Climate Change Research
    • /
    • v.1 no.3
    • /
    • pp.205-210
    • /
    • 2010
  • LED light has various advantages such as an energy saving effect of over 80% compared to existing lighting and environmentally friendly characteristics; however, there has been no affordable market for LED lighting because of its expensive price. This study discussed the validity of the expansion of distribution of LED lighting through an assessment of economic efficiency concerning LED lightening in order to analyze its efficiency in terms of energy savings and maintenance and repair, which will be generated as a result of the change from existing incandescent bulbs to LED lighting in the public sector. As to the target of analysis, the paper reviewed the validity of change to LED lighting as a result of the elimination of existing incandescent bulbs, by referring to 'the current incandescent bulb use and elimination performance' published by the Ministry of Knowledge Economy based on the "Elimination management system" executed by Korea Energy Management Corporation. The paper considered expenses for change, annual power savings amount and electric charges savings amount, repair and maintenance cost, $CO_2$ reduction volume, and the profit from the sale of CER (certified emission reduction). As a result of analyzing economic efficiency, when the discount rate during the change of existing incandescent bulb lighting to LED lighting is 3.26%, the profit was 8,648,400,000 won. Accordingly, NPV was analyzed to have a 'positive (+)' value, which means that this change is profitable.

Charge Storage Behavior of the Carbons Derived from Polyvinylidene Chloride-resin and Polyvinylidene Fluoride in Different pH Electrolytes (다른 pH의 전해질에서 polyvinylidene chloride-resin와 polyvinylidene fluoride로부터 합성된 다공성 탄소의 전하 저장 거동)

  • Sang-Eun, Chun
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.394-401
    • /
    • 2022
  • Two polymer precursors, polyvinylidene chloride-resin (PVDC-resin) and polyvinylidene fluoride (PVDF), are assembled into the microporous carbon by pyrolysis. Microporous carbon is advantageous as an electrode for supercapacitors that store electric charges through ion adsorption/desorption. The pyrolysis also turns the various heteroatoms of two precursors into functional groups, contributing to the additional charge storage. The analysis of the porous structure and function group during carbonization are important to develop the carbon for energy storage. Here, we analyzed the functional groups of two polymer-derived carbons through X-ray photoelectron spectroscopy. The electrochemical properties of the functional groups were explored in various pH electrolytes. The specific capacitance of two carbons in the acidic electrolyte (1 M H2SO4) was improved compared to that in the neutral electrolyte (0.5 M Na2SO4) due to the faradaic charge/discharge reaction of the quinone functional group. In particular, the carbon electrode derived from PVDC-resin exhibits a lower capacity than the carbon from PVDF due to the small micropores. In the alkaline electrolyte (6 M KOH), the highest specific capacitance and rate capability were obtained among the three electrolytes for both electrodes based on the facile adsorption of the constituent electrolyte ions (K+, OH-).

Efficiency Estimation for Desalination System of Seawater Using Reverse Osmosis Membrane (역삼투압막 해수담수화 장치의 미네럴 분리 성능평가)

  • Moon, Deok-Soo;Jung, Dong-Ho;Kim, Hyeon-Ju;Shin, Phil-Kwon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.60-66
    • /
    • 2005
  • When external pressure higher than osmosis pressure is reversely derived into solution, its solvent is moved into the solution having lower concentration, which is called 'reverse osmosis'. We investigated the desalination application of deep ocean water using reverse osmosis pressure of $40-70\;kgf/cm^2$ We observed how to operational factor j like flow rate, water temperature and pressure have effect on efficiency of reverse osmosis membrane and salts rejection. Fluxes of reverse osmosis membrane are directly proportional to water temperature and pressure. However, salts rejection rates are positively correlated with pressure and inversely proportional to water temperature. Separation efficiencies of osmosis membrane for major elements such as $Mg^{2+},\;Ca^{+2},\;Na^+\;and\;K^+$ are as follows in a strong electrolysis solution like seawater; $Ca^{2+},\;Mg^{2+}>K^+>Na^+$. Rejection rates of $Mg^{2+}\;and\;Ca^{2+}$ that have high electric charges are over 99% and show positively correlation with water temperature. Rejection rates of $Na^+$ having low electric charge is observed to be 98%-99%, which rates is much lower than those of $2^+$ charged ions like $Ca^{2+}\;and\;Mg^{2+}$. Ion rejection rates of boron, B, are much low because boron is present il free state or gas phase in seawater. Boron concentration in desalination water is over criteria of Korean drinking water, 0.3 mg/L. However, we could satisfied with the criteria of drinking water under the operation condition like temperature $5^{\circ}C$ and pressure $70kgf/cm^2$, using the relationship that rejection rates of boron is proportional to pressure and is inversely proportional to water temperature

  • PDF

Impacts of Energy Tax Reform on Electricity Prices and Tax Revenues by Power System Simulation (전력계통 모의를 통한 에너지세제 개편의 전력가격 및 조세수입에 대한 영향 연구)

  • Kim, Yoon Kyung;Park, Kwang Soo;Cho, Sungjin
    • Environmental and Resource Economics Review
    • /
    • v.24 no.3
    • /
    • pp.573-605
    • /
    • 2015
  • This study proposed scenarios of tax reform regarding taxation on bituminous coal for power generation since July 2015 and July 2014, estimated its impact on SMP, settlement price, tax revenue from year 2015 to year 2029. These scenarios are compared with those of the standard scenario. To estimate them, the power system simulation was performed based on the government plan, such as demand supply program and the customized model to fit Korea's power system and operation. Imposing a tax on bituminous coal for power generation while maintaining tax neutrality reducing tax rate on LNG, the short-term SMP is lowered than the one of the standard scenario. Because the cost of nuclear power generation is still smaller than costs of other power generation, and the nuclear power generation rarely determines SMPs, the taxation impact on SMP is almost nonexistent. Thus it is difficult to slow down the electrification of energy consumption due to taxation of power plant bituminous coal in the short term, if SMP and settlement price is closely related. However, in the mid or long term, if the capacity of coal power plant is to be big enough, the taxation of power plant bituminous coal will increase SMP. Therefore, if the tax reform is made to impose on power plant bituminous coal in the short term, and if the tax rate on LNG is to be revised after implementing big enough new power plants using bituminous coal, the energy demand would be reduced by increasing electric charges through energy tax reform. Both imposing a tax on power plant bituminous coal and reducing tax rate on LNG increase settlement price, higher than the one of the standard scenario. In the mid or long term, the utilization of LNG complex power plants would be lower due to an expansion of generating plants, and thus, the tax rate on LNG would not affect on settlement price. Unlike to the impact on SMP, the taxation on nuclear power plants has increased settlement price due to the impact of settlement adjustment factor. The net impact of energy taxation will depend upon the level of offset between settlement price decrease by the expansion of energy supply and settlement price increase by imposing a tax on energy. Among taxable items, the tax on nuclear power plants will increase the most of additional tax revenue. Considering tax revenues in accordance with energy tax scenarios, the higher the tax rate on bituminous coal and nuclear power, the bigger the tax revenues.

Development of Electret to Improve Output and Stability of Triboelectric Nanogenerator (마찰대전 나노발전기의 출력 및 안정성 향상을 위한 일렉트렛 개발)

  • Kam, Dongik;Jang, Sunmin;Yun, Yeongcheol;Bae, Hongeun;Lee, Youngjin;Ra, Yoonsang;Cho, Sumin;Seo, Kyoung Duck;Cha, Kyoung Je;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.93-99
    • /
    • 2022
  • With the rapid development of ultra-small and wearable device technology, continuous electricity supply without spatiotemporal limitations for driving electronic devices is required. Accordingly, Triboelectric nanogenerator (TENG), which utilizes static electricity generated by the contact and separation of two different materials, is being used as a means of effectively harvesting various types of energy dispersed without complex processes and designs due to its simple principle. However, to apply the TENG to real life, it is necessary to increase the electrical output. In addition, stable generation of electrical output, as well as increase in electrical output, is a task to be solved for the commercialization of TENG. In this study, we proposed a method to not only improve the output of TENG but also to stably represent the improved output. This was solved by using the contact layer, which is one of the components of TENG, as an electret for improved output and stability. The utilized electret was manufactured by sequentially performing corona charging-thermal annealing-corona charging on the Fluorinated ethylene propylene (FEP) film. Electric charges artificially injected due to corona charging enter a deep trap through the thermal annealing, so an electret that minimizes charge escape was fabricated and used in TENG. The output performance of the manufactured electret was verified by measuring the voltage output of the TENG in vertical contact separation mode, and the electret treated to the corona charging showed an output voltage 12 times higher than that of the pristine FEP film. The time and humidity stability of the electret was confirmed by measuring the output voltage of the TENG after exposing the electret to a general external environment and extreme humidity environment. In addition, it was shown that it can be applied to real-life by operating the LED by applying an electret to the clap-TENG with the motif of clap.