• 제목/요약/키워드: Electric breakdown

검색결과 685건 처리시간 0.036초

운전압력 변화에 따른 마이크로파 공기 플라즈마의 특성연구 (Characteristics of Microwave Air Plasma With a Wide Range of Operating Pressures)

  • 조정현;장봉철;박봉경;김윤환;정용호;김곤호
    • 한국진공학회지
    • /
    • 제11권1호
    • /
    • pp.68-75
    • /
    • 2002
  • 본 연구에서는 운전압력을 1 mTorr~760 Torr까지 변화시키며 발생되는 마이크로파 공기 플라즈마의 특성을 관찰하였다. 마이크로파 공기 플라즈마 발생을 위하여 마이크로파의 전송선로인 도파관은 $TE_{01}$ mode로 설계 및 제작하였으며, 가정용 전자렌지에 사용되는 마그네트론을 이용하여 AC-type microwave source를 제작하였다. 입력 전력은 370 W로 일정하게 유지하였으며, 이때 발생하는 플라즈마의 특성 관찰은 고속주사 정전탐침과 OES (Optical Emission Spectroscopy)를 이용하였다. 최소 절연파괴 전기장의 세기(breakdown E-field)를 가지는 압력인 500 mTorr를 기준으로 발생 플라즈마의 특성은 많은 변화를 보였으며 이 압력은 입력주파수($\omega$)와 충돌주파수($V_c$)가 일치하는 조건이었다. 이때 공기의 유효충돌 단면적은 $9.23\times10^{-l6}\textrm{cm}^2$으로 계산되었다. 운전압력 500 mTorr 이하의 영역에서 절연파괴 전기장의 세기는 약 $5.7\times10^4$V/m-Torr의 값을 갖으며 압력에 반비례하여 감소하였고, 500 mTorr에서 전기장은 12.5 kV/m로 최저 값을 갖고, 500 mTorr 이상의 영역에서는 약 43 V/m-Torr로 압력에 비례하여 증가하였다. OES 측정결과 마이크로파 공기 플라즈마에서 발생되는 주요 이온의 성분은 산소, 아르곤, 질소였으며, 특히 500 mTorr 이하의 영역에서는 산소와 아르곤 이온의 발생이 지배적이었다. 공기내의 산소(O(II))의 이온온도는 압력이 증가함에 따라 약 1.2 eV에서 0.5 eV로 감소하는 경향을 보였다. 정전 탐침 측정 결과는 500 mTorr 이하의 영역에서 플라즈마 밀도가 증가하는 경향을 보였으며 500 mTorr 이상의 영역에서 플라즈마 밀도는 비교적 낮았다.

헬륨 대기압 유전체 격벽 방전기의 타운젠트-글로우 방전 모드 전이 연구 (Observation of Discharge Mode Transient from Townsend to Glow at Breakdown of Helium Atmospheric Pressure Dielectric Barrier Discharge)

  • 배병준;김남균;윤성영;신준섭;김곤호
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.26-31
    • /
    • 2016
  • The Townsend to glow discharge mode transition was investigated in the dielectric barrier discharge (DBD) helium plasma source which was powered by 20 kHz / $4.5 kV_{rms}$ high voltage at atmospheric pressure. The spatial profile of the electric field strength at each modes was measured by using the intensity ratio method of two helium emission lines (667.8 nm ($3^1D{\rightarrow}2^1P$) and 728.1 nm ($3^1S{\rightarrow}2^1P$)) and the Stark effect. ICCD images were analyzed with consideration for the electric field property. The Townsend discharge (TD) mode at the initial stage of breakdown has the light emission region located in the vicinity of the anode. The electric field of the light emitting region is close to the applied field in the system. Immediately, the light emitting region moves to the cathode and the discharge transits to the glow discharge (GD) mode. This mode transition can be understood with the ionization wave propagation. The electric field of the emitting region of GD near cathode is higher than that of TD near anode because of the cathode fall formation. This observation may apply to designing a DBD process system and to analysis of the process treatment results.

극저온 환경을 고려한 기압별 $N_2+SF_6$, $N_2+CF_4$, $N_2$가스의 절연파괴 전압 값을 이용한 최대전계 분석 (Analysis of the Maximum Electric Field for Changing Pressure using Breakdown Characteristic of $N_2+SF_6$, $N_2+CF_4$, $N_2$ Gases in a Cryogenic Environment)

  • 오석호;이상화;신우주;박태건;성재규;황재상;이방욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1548-1549
    • /
    • 2011
  • High voltage cryogenic insulation issues need to be addressed in order to promote the commercialization of high temperature superconducting (HTS) equipment. As a fundamental step in the development of the optimum bushings for HTS devices, the breakdown characteristics of liquid nitrogen mixed with liquefied insulating gases such as $N_2$, $SF_6$, and $CF_4$ have been investigated. In order to investigate the possibility of substituting $CF_4$ gas for $SF_6$ gas for the bushings of HTS electrical equipment, AC withstanding voltage tests have been performed. In this paper, finding the maximum electric field $E_{max}$ using utilization factor ${\eta}$. This result is applicable to developing the real scale HTS equipment of the design parameters.

  • PDF

액체질소 내에서 뇌 임펄스전압에 대한 압력별 GFRP의 절연파괴 특성 분석 (A Study on the Dielectric Characteristics of GFRP in LN2 under Lightning Impulse Voltage According to Pressure)

  • 홍종기;허정일;남석호;강형구
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1471-1476
    • /
    • 2012
  • A study on the dielectric characteristics of the Glass Fiber Reinforced Plastic (GFRP) is important for designing a reliable high voltage superconducting machines such as transmission superconducting fault current limiters, superconducting cables, and superconducting transformers. In this paper, dielectric experiments of the GFRP under lightning impulse voltage are conducted in liquid nitrogen($LN_2$) according to various experimental conditions such as the thicknesses of the GFRP, the diameters of electrode systems and the pressures. The dielectric characteristics of the GFRP are analyzed by using a Finite Elements Method(FEM) according to various field utilization factors. It has been reported that the electrical insulation design of the GFRP would be conducted by considering the mean electric field intensity($E_{mean}$) distributed inside the GFRP. In this study, it is found that the dielectric performance of the GFRP could be explained by not only $E_{mean}$ but also the maximum electric field intensity ($E_{max}$). Finally, the empirical formulae of the GFRP to estimate an electrical breakdown voltage at sparkover under the lightning impulse condition are deduced. It is expected that the presented experimental results in this paper are helpful to design electrically reliable high voltage superconducting machines using the GFRP as an insulation material.

전력기기용, 에폭시/마이크로 실리카 및 알루미나 복합제의 전기적·기계적 파괴 강도 특성 (Electrical and Mechanical Strength Properties of Epoxy/Micro Silica and Alumina Composites for Power Equipment)

  • 박주언;박재준
    • 한국전기전자재료학회논문지
    • /
    • 제31권7호
    • /
    • pp.496-501
    • /
    • 2018
  • In this study, we prepared 40, 45, 50, 55, 60, 65, and 70 wt% content composites filled in epoxy matrix for two micro silica and three micro alumina types for use as a GIS heavy electric machine. As a filler type of epoxy composite, micro silica composites showed excellent AC breakdown strength properties compared to micro alumina composites in the case of electrical properties of micro silica and alumina. The electrical breakdown properties of micro silica composites increased with increasing filler content, whereas those of micro alumina decreased with increasing filler content. In the case of mechanical properties, the micro silica composite showed improved tensile strength and flexural strength compared with the micro alumina composite. In addition, mechanical properties such as tensile strength and flexural strength of micro silica and alumina composites decreased with increasing filler content. This is probably because O-H groups are present on the surface of silica in the case of micro silica but are not present on the surface of alumina in the case of micro alumina.

표면 전하에 의한 Thyristor 소자의 차단전압 및 누설전류특성 연구 (Study on the Blocking Voltage and Leakage Current Characteristic Degradation of the Thyristor due to the Surface Charge in Passivation Material)

  • 김형우;서길수;방욱;김기현;김남균
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권1호
    • /
    • pp.34-39
    • /
    • 2006
  • In high-voltage devices such as thyristor, beveling is mostly used junction termination method to reduce the surface electric field far below the bulk electric field and to expand the depletion region thus that breakdown occurs in the bulk of the device rather than at the surface. However, coating material used to protect the surface of the device contain so many charges which affect the electrical characteristics of the device. And device reliability is also affected by this charge. Therefore, it is needed to analyze the effect of surface charge on electrical characteristics of the device. In this paper, we analyzed the breakdown voltage and leakage current characteristics of the thyristor as a function of the amount of surface charge density. Two dimensional process simulator ATHENA and two-dimensional device simulator ATLAS is used to analyze the surface charge effects.

Efficiency Estimation of Toxicity Free Eire Resistance Cable

  • Yoon, Hun-Ju;Hon, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권3호
    • /
    • pp.34-38
    • /
    • 2002
  • In this paper, efficiency estimation of toxicity fee fire resistance cable experiments was measured smoke density of toxicity free fire resistance polyolefin insulation material and electric field dependence of tree shape in low density polyethylene (LDPE). One of the most serious causes of failure in high-voltage cables, can be an electrical discharge across an internal gab or void in the insulating material. Treeing due to partial discharge is one of the main causes of breakdown in the insulating materials and reduction of the insulation life. Therefore the necessity for establishing a method to diagnose the aging of insulation materials and to predict the breakdown of insulation and research of the fire resistance character has become important. First, we have studied on electric field dependence of tree shape in LDPE about treeing phenomena occurring on the high electrical field. Second, the measurement method is the attenuation quantity of irradiation by smoke accumulating with in a closed chamber due to non-flaming heat decomposition and flaming combustion. A main cause of fire-growth and generating toxic gas when, it bums, should be dealt with great care in life. safety design. The fire gases were occurred carbon monoxide and decomposition than in polyolefin due to incomplete combustion of PVC, which has high content of carbon in chemical compound.

Analysis of Leak and Water Absorption Test Results for Water-Cooled Generator Stator Windings

  • Kim, Hee-Soo;Bae, Yong-Chae;Lee, Wook-Ryun;Lee, Doo-Young;Kim, Hee-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.230-235
    • /
    • 2012
  • Cases of insulation breakdown damage of water-cooled generator stator windings occur frequently due to coolant leakage and water absorption worldwide. Such serious accidents may cause not only enormous economic loss but also very serious grid accidents in terms of stable supply of electric power. More than 50 % of domestic generators have been operated for more than 15 years, and leak and water absorption problem of windings are often found during the planned preventive maintenance period. Since 2005, leak and water absorption tests have been performed for total watercooled stator windings after fully drying the inside of the windings. The results are then comprehensively analyzed. The result of the test performed by GE, a foreign manufacturer, for 141 generators showed failures in 80 of them (failure rate: 57 %), whereas in the tests carried out in Korean domestic power plants, only 14 out of 50 generators showed failures (failure rate: 28 %).