DOI QR코드

DOI QR Code

Electrical and Mechanical Strength Properties of Epoxy/Micro Silica and Alumina Composites for Power Equipment

전력기기용, 에폭시/마이크로 실리카 및 알루미나 복합제의 전기적·기계적 파괴 강도 특성

  • Park, Joo-Eon (Hyundai Electric & Energy System Co., LTD.) ;
  • Park, Jae-Jun (Department of Electrical Electronic Engineering, Joongbu University)
  • 박주언 (현대일렉트릭앤에너지시스템(주)) ;
  • 박재준 (중부대학교 전기전자자동차공학부)
  • Received : 2018.08.10
  • Accepted : 2018.09.07
  • Published : 2018.11.01

Abstract

In this study, we prepared 40, 45, 50, 55, 60, 65, and 70 wt% content composites filled in epoxy matrix for two micro silica and three micro alumina types for use as a GIS heavy electric machine. As a filler type of epoxy composite, micro silica composites showed excellent AC breakdown strength properties compared to micro alumina composites in the case of electrical properties of micro silica and alumina. The electrical breakdown properties of micro silica composites increased with increasing filler content, whereas those of micro alumina decreased with increasing filler content. In the case of mechanical properties, the micro silica composite showed improved tensile strength and flexural strength compared with the micro alumina composite. In addition, mechanical properties such as tensile strength and flexural strength of micro silica and alumina composites decreased with increasing filler content. This is probably because O-H groups are present on the surface of silica in the case of micro silica but are not present on the surface of alumina in the case of micro alumina.

Keywords

References

  1. Z. Li, K. Okamoto, Y. Ohki, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 17, 653 (2010). [DOI: https://doi.org/10.1109/TDEI.2010.5492235]
  2. J. J. Park, S. S Shin, C. Y. Yoon, J. Y. Lee, and J. E. Park, Trans. Electr. Electron. Mater., 16, 260 (2015). [DOI: https://doi.org/10.4313/TEEM.2015.16.5.260]
  3. T. Imai, F. Sawa, T. Nakano, T. Ozaki, T. Shimizu, M. Kozako, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 13, 319 (2006). [DOI: https://doi.org/10.4313/10.1109/TDEI.2006.1624276]
  4. J. J. Park, J. Y. Lee, and H. K. Lee, J. Nanosci. Nanotechnol., 17, 7598 (2017). [DOI: https://doi.org/10.1166/jnn.2017.14790]
  5. J. J. Park, C. H. Lee, J. Y. Lee, and H. D. Kim, IEEE Trans. Dielectr. Electr. Insul., 18, 667 (2011). [DOI: https://doi.org/10.1109/TDEI.2011.5931051]
  6. J. J. Park and J. Y. Lee, IEEE Trans. Dielectr. Electr. Insul., 24, 3794 (2017). [DOI: https://doi.org/10.1109/TDEI.2017.006609]
  7. Q. Wang, Z. Li, J. Wu, and Y. Yin, Proc. 2012 IEEE International Conference on Condition Monitoring and Diagnosis (IEEE, Bali, Indonesia, 2012) p. 1110.
  8. R. Kochetov, T. Andritsch, P.H.F. Morshuis, and J. J. Smit, Proc. 2010 IEEE International Symposium on Electrical Insulation (IEEE, San Diego, USA, 2010) p. 1.
  9. J. Guo, Y. Chen, Z. Jia, T. Tanaka, J. Wu, and Y. Cheng, Proc. Proceedings of 2014 International Symposium on Electrical Insulating Materials (IEEE, Niigata, Japan, 2014) p. 441. [DOI: https://doi.org/10.1109/iseim.2014.6870813]
  10. Z. Farhadinejad, M. Ehsani, S. Moemenbellah, S.M.B. Alavi, M. M. Saei-Shirazi, and H. Borsi, IEEE Trans. Nanotechnol., 11, 957 (2012). [DOI: https://doi.org/10.1109/TNANO.2012.2209458]