• Title/Summary/Keyword: Electric breakdown

Search Result 685, Processing Time 0.03 seconds

Electrical Properties of Liquid Insulation as a Function of Temperature (온도에 따른 액체 절연유의 전기적 특성 )

  • Tae-Hee Kim;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.280-285
    • /
    • 2024
  • In this paper, the electrical properties of liquid insulating oil were analyzed by changing the ambient temperature change at 10℃ in-tervals from 0℃ to 30℃ through an insulation breakdown experiment in order to analyze the insulation performance of liquid in-sulating oil that varies according to temperature changes. As a result, it was confirmed through experiments that the lower the am-bient temperature, the higher the insulation breakdown voltage, depending on both the electrode shape and the electrode interval, and it was determined that the lower the ambient temperature, the higher the insulation performance of the liquid insulating oil.

Effect of Electric Field Frequency on the AC Electrical Treeing Phenomena in an Epoxy/Layered Silicate Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.278-281
    • /
    • 2013
  • The effects of electric field frequency on the AC electrical treeing phenomena in an epoxy/layered silicate (1.5 wt%) were investigated in a needle-plate electrode arrangement. A layered silicate was exfoliated in an epoxy-base resin with AC electric field apparatus. To measure the treeing initiation and propagation- and the breakdown rate, a constant alternating current (AC) of 10 kV with three different electric field frequencies (60, 500, and 1,000 Hz) was applied to the specimen in the needle-plate electrode specimen in an insulating oil bath at $130^{\circ}C$. At 60 Hz, the treeing initiation time was 12 min, the propagation rate was $0.24{\times}10^{-3}$ mm/min, and the morphology was a dense branch type. As the electric field frequency increased, the treeing initiation time decreased and the propagation rate increased. At 1,000 Hz, the treeing initiation time was 5 min, the propagation rate was $0.30{\times}10^{-3}$ mm/min, and the morphology was a dense bush type.

Breakdown Voltage Characteristics of LDMOST with External Field Ring (외부 전계 링을 갖는 LDMOST의 항복전압 특성)

  • Oh Dong-joo;Yeom Kee-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1719-1724
    • /
    • 2004
  • In this paper, we have proposed a new structure of LDMOST, which has been expected as a next generation RF power device, to improve the BV(Breakdown Voltage) characteristics. The proposed structure, named external field ring, is formed around a drift region by the three dimensional structure. The external field ring relieves the electric field in the drift region and improves the BV characteristics. By the three dimensional TCAD simulations, it was found that the BV of LDMOST was increased by the increase of the junction depth and doping concentration of the external field ring. Therefore, the BV characteristics of the LDMOST can be remarkably improved by addition of external field ring using an existing p+ sinker process.

A Study on the Dielectric Breakdown Strength Characteristics of Epoxy-$SiO_2$ Compound Material for Electric Installation (전기설비용 에폭시-$SiO_2$ 복합재료의 절연파괴 특성에 관한 연구)

  • 김재환;박창옥
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 1991
  • In this study the investigation were carried out on short-term breakdown characteristics of the compound material dependent on change of filler quantity, ambient temperature(room temperature~[$190[^{\circ}C$]) and kinds of voltage sources for the compound materials of Bisphenol- A epoxy resins filled with $SiO_2$ particles. As the results, obtained the dielectric breakdown strength generally decrease as increasing the quantity of filler and the distance, spacing of each's particles, decrease as increasing the quantity of filler, when the distance is less than [$7.5\mu\textrm{m}$], dielectric breakdown strength is nearly constant. In the case on AC voltage dielectric strength of filled epoxy resins is stronger than nonfilled epoxy resins on temperature region more than $130[^{\circ}C$].

  • PDF

Time-Dependent Dielectric Breakdown Characteristics of Thin $SiO_2$ Films and Their Correlation to Defects in the Oxide (얇은 산화막의 TDDB 특성과 막내의 결함과의 상관성)

  • Sung, Yung-Kwon;Choi, Jong-Ill;Kim, Sang-Yung;Han, Sung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.147-150
    • /
    • 1988
  • Since the integration level of VLSI circuits progresses very quickly, a highly reliable thin $SiO_2$ film is required to fabricate a small-geometry MOS device. In the present study we have attempted to eliminate the failure-causing defects that develop in thin oxide films during the oxidation step by performing a long-time preoxidation and postoxidation annealing. The TDDB test and the copper decoration method were used to calculate the oxide defects density of MOS device. The dielectric reliability of high-quality thin oxides have been studied by using the time-zero-dielectric-breakdown (ramp-voltage-stressed I-V) and time-dependent-dielectric -breakdown (Constant-stressed I-V) tests. Failure times against temperature and electric field are examined and acceleration factors are abtained for each parameter. Based on the data obtained, breakdown wearout limitation for thin oxide films is estimated.

  • PDF

Breakdown Strength Estimation of Non-Cellulosic Insulating Materials Used in Electrical Power Equipment

  • Singh, Sakshi;Mohsin, Mirza Mohd.;Masood, Aejaz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.338-340
    • /
    • 2017
  • Breakdown of solid insulating materials in power equipment could result in undesired outages and replacements, and may be due to an increase in electric stress on the material. Therefore, it is necessary to conduct a proper diagnosis of materials before their practical use. In this work, a few inherent properties of different non-cellulosic insulating materials, such as Nomex, Teflon, laminated Nomex, glass bonded mica, epoxy resin bonded mica paper, and epoxy resin bonded fiberglass, have been evaluated by performing non-destructive dielectric diagnostic measurements, and an attempt has been made to correlate these basic parameters to evaluate the breakdown strength (BDS). An equation has been proposed using a basic theory which defines the correlation between the BDS, dielectric constant, dissipation factor, sample thickness, and volume resistivity. The results obtained from the equation are also compared with the experimental values. The suggested equation will be helpful to predict the BDS of any non-cellulosic material without experimentation in the laboratory.

Lightning Impulse Breakdown Characteristic of Dry-Air/Silicone Rubber Hybrid Insulation in Rod-Plane Electrode

  • Kwon, Jung-Hun;Seo, Cheong-Won;Kim, Yu-Min;Lim, Kee-Joe
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1181-1187
    • /
    • 2015
  • Sulfur hexafluoride (SF6) gas is used widely in electric power equipment such as Gas Insulated Switchgear (GIS), Gas Insulation transmission Line (GIL), and Gas Circuit Breaker (GCB). But applications of SF6 should be restricted because SF6 gas is one of the greenhouse effect gases. To reduce use of SF6 gas, a study on eco-friendly alternative insulation medium is needed. In this paper, we investigated lightning impulse (LI) breakdown of dry-air which is attracting attention as an ecofriendly alternative gas and the LI breakdown of hybrid insulation combined with dry-air and solid insulation (Room-Temperature Vulcanizing Silicone Rubber-RTV SIR) and dry-air in inhomogeneous fields according to gap distance and pressure. The experiment results showed that the LI breakdown strength of hybrid insulation system was higher than that of dry-air insulation system. It was verified that the development of technology related to eco-friendly power apparatus compact such GIS, GCB and GIL can be used as basic research data.

Breakdown characteristics of SF6 and Imitation Air in Temperature Decline

  • Lim, Chang-Ho;Choi, Eun-Hyeok;Kim, Do-Seok;Kim, Young-Su;Park, Won-Zoo;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.115-121
    • /
    • 2007
  • This paper describes experiments of the breakdown characteristics by temperature change of $SF_6$ gas and Imitation Air(I-Air) in model GIS(Gas Insulated Switchgear). From the results of the experiments, the breakdown characteristics classify the vapor stage of $SF_6$ according to Paschen's law, in which the stage of coexistence for gas & liquid of the voltage value increases. This results in large deviation and the breakdown of the voltage(VB) low stage as the interior of the chamber is filled with a mixture of $SF_6$ that is not liquefacted and remaining air that can not be ventilated. The ability of $SF_6$ liquid($LSF_6$) insulation is higher than high-pressurize $SF_6$ gas. The VB of the I-Air decreases as the temperature drops and the VB also drops. It is considered that the results of this paper are fundamental data for the electric insulation design of superconductor and cryogenic equipment that will be studied and developed in the future.

Impacts of Process and Design Parameters on the Electrical Characteristics of High-Voltage DMOSFETs (공정 및 설계 변수가 고전압 LDMOSFET의 전기적 특성에 미치는 영향)

  • 박훈수;이영기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.911-915
    • /
    • 2004
  • In this study, the electrical characteristics of high-voltage LDMOSFET fabricated by the existing CMOS technology were investigated depending on its process and design parameter. In order to verify the experimental data, two-dimensional device simulation was carried out simultaneously. The off- state breakdown voltages of n-channel LDMOSFETs were increased nearly in proportional to the drift region length. For the case of decreasing n-well ion implant doses from $1.0\times{10}^{13}/cm^2$ to $1.0\times{10}^{12}/cm^2$, the off-state breakdown voltage was increased approximately two times. The on-resistance was also increased about 76 %. From 2-D simulation, the increase in the breakdown voltage was attributed to a reduction in the maximum electric field of LDMOS imolanted with low dose as well as to a shift toward n+ drain region. Moreover, the on- and off-state breakdown voltages were also linearly increased with increasing the channel to n-tub spacing due to the reduction of impact ionization at the drift region. The experimental and design data of these high-voltage LDMOS devices can widely applied to design smart power ICs with low-voltage CMOS control and high-voltage driving circuits on the same chip.

A Study on High Voltage SiC-IGBT Device Miniaturization (고내압 SiC-IGBT 소자 소형화에 관한 연구)

  • Kim, Sung-Su;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.785-789
    • /
    • 2013
  • Silicon Carbide (SiC) is the material with the wide band-gap (3.26 eV), high critical electric field (~2.3 MV/cm), and high bulk electron mobility (~900 $cm^2/Vs$). These electronic properties allow attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation compared to Si devices. In general, device design has a significant effect on the switching and electrical characteristics. It is known that in this paper, we demonstrated that the switching performance and breakdown voltage of IGBT is dependent with doping concentration of p-base region and drift layer by using 2-D simulations. As a result, electrical characteristics of SiC-IGBT deivce is higher breakdown voltage ($V_B$= 1,600 V), lower on-resistance ($R_{on}$= 0.43 $m{\Omega}{\cdot}cm^2$) than Si-IGBT. Also, we determined that processing time and cost is reduced by the depth of n-drift region of IGBT was reduced.